取环挂什么科室| 乳岩是什么病| 补充免疫力吃什么好| 两极分化是什么意思| 花仙子是什么意思| 女性盆腔炎吃什么药| 女性肾功能不好有什么症状| 女红是什么意思| 银花指什么生肖| 头晕挂什么科比较好| 什么泡水喝治口臭| 高原反应有什么症状| 蓝色和红色混合是什么颜色| 形态各异的异是什么意思| 发狂是什么意思| 肾结石什么东西不能吃| 竣字五行属什么| 中暑吃什么好| 彩超低回声是什么意思| 漂亮的什么| 雏形是什么意思| 上午右眼皮跳什么预兆| 双源ct主要检查什么| 身体缺糖有什么症状| 怀孕头三个月吃什么好| 子弟是什么意思| 急性鼻窦炎吃什么药| 12月16是什么星座| 无什么无什么的成语| 脑梗是什么症状| 为什么北方人比南方人高| 活检和穿刺有什么区别| 1952年属什么| 多才多艺是什么生肖| 风湿吃什么药好| 荷花是什么季节开的| 吃什么蔬菜可以降血脂| 让平是什么意思| 8月26日是什么星座| 肺部疼痛什么原因| 油腔滑调指什么生肖| 着重号是什么符号| 糖化高是什么意思| 魔芋是什么东西做的| 舅舅的舅舅叫什么| 月经老是推迟是什么原因| 孩子出汗多是什么原因| 水烟是什么| 王八是什么字| 艾滋病是一种什么病| 看日出是什么生肖| 孕早期生气对胎儿有什么影响| 颜字五行属什么| 湿度大对人体有什么影响| 627是什么意思| 什么是直肠炎| 什么是高潮| 什么水果去火效果最好| 九锡是什么意思| 英语介词是什么意思| 阮小五的绰号是什么| 尿白细胞3十什么意思| pppd是什么意思| 睡觉总醒是什么原因| 8月3日是什么日子| 斑秃是什么原因引起的| gbs是什么意思| 割包皮什么意思| 尼特族是什么意思| 3.1415926是什么意思| 助教是干什么的| 天秤座和什么星座最不配| 什么叫全日制本科| 歪理是什么意思| 属猪和什么属相最配| 什么是口交| 蜈蚣咬了擦什么药最好| 扫把星代表什么生肖| 爱啃指甲是什么原因| 男生喜欢什么样的女生| 人体乳头瘤病毒是什么| 白细胞低说明什么| 味极鲜是什么| 息斯敏是什么药| 血滴子是什么| 筋膜炎吃什么药好得快| 肾构错瘤要注意什么| 争辩的近义词是什么| 小腿浮肿是什么原因女性| 世界上什么东西最大| 晚上做梦梦到蛇是什么意思| 筋膜炎吃什么药最有效| 指什么| 下腹部胀是什么原因| 喝苹果醋有什么好处和坏处| 海棠果什么时候成熟| 分母是什么意思| 塑料水杯什么材质好| 薄荷叶泡水喝有什么功效和作用| 72年属什么的生肖| 吃什么利尿| 什么是周边| 部队班长是什么军衔| o型血和ab型血生的孩子是什么血型| 抓龙筋什么意思| 属猴本命佛是什么佛| 优五行属性是什么| 12.29是什么星座| 吃b族维生素有什么好处| 钟馗是什么人物| 什么叫鳞状细胞| 软助什么意思| 钥匙是什么意思| 下肢浮肿是什么原因引起的| 疱疹吃什么药好得快| 蟋蟀喜欢吃什么| 喉咙痒干咳吃什么药| 中考送什么礼物| 松果体囊肿是什么病| 心脏难受是什么原因| 左肺结节是什么意思| 新疆有什么烟| 舌头干是什么原因| 非转基因是什么意思| 孕妇前三个月吃什么对胎儿好| 夏天脚开裂是什么原因| 曼妥思是什么糖| 一垒二垒三垒全垒打是什么意思| 猪胰是什么东西| 褶子是什么意思| 血管性头痛吃什么药| 六娃的能力是什么| vps是什么| 检查hpv需要注意什么提前注意什么| 脑萎缩有什么症状| 孝喘吃什么药好| 红曲是什么东西| 低度cin病变是什么意思| 李子有什么功效与作用| 茶油是什么油| 孕妇耻骨疼是什么原因| 心率过快吃什么药好| 乳清粉是什么东西| 马革裹尸是什么意思| 复机是什么意思| 盛世美颜是什么意思| 什么叫情劫| 五福是什么生肖| 漏斗胸是什么原因造成的| 雨霖铃是什么意思| 平方是什么意思| 卵泡破裂是什么意思| 爱恨就在一瞬间是什么歌| 胸导联低电压什么意思| 虚汗是什么症状| 蛞蝓是什么动物| 员工体检费计入什么科目| 红参适合什么人吃| 手指尖疼是什么原因| 土地出让金什么意思| 低烧是什么病的前兆| 安徽的特产是什么| 脚上长鸡眼是什么原因| 恶心想吐胃不舒服是什么原因| 急性盆腔炎有什么症状表现呢| 晚上看见刺猬预示什么| 稀料是什么| 什么情况需要根管治疗| 婚检男性检查什么| 什么是什么| 本子什么意思| 婴儿足底采血查什么| 青蛙怕什么| 什么时辰出生最好| 3月7日是什么星座| 遥字五行属什么| 正常人的尿液是什么颜色| 吹空调感冒咳嗽吃什么药| 甘露是什么| 失眠吃什么中成药| 病毒性咳嗽吃什么药好| p波代表什么| 从容面对是什么意思| 回族不能吃什么肉| eq是什么| 肉炒什么菜谱大全| yellow是什么颜色| 东风破是什么意思| 摩丝是什么| 拍身份证照片穿什么颜色衣服好看| 黑枸杞对男性性功能有什么帮助| 白头发吃什么可以变黑| 飞机后面的白烟是什么| 脑梗前有什么预兆| 系统性红斑狼疮挂什么科| ak是什么意思| 查血常规能查出什么| 为什么会静脉曲张| 农历8月15是什么节日| 天气热吃什么解暑| 甲状腺挂什么科| 乳房有硬块是什么原因| 吃什么水果祛斑最快| 炖牛肉放什么容易烂| 苦瓜对肝脏有什么好处| 例假血发黑是什么原因| 开车是什么意思| 牡蛎是什么东西| 什么是正装| 大便不规律是什么原因| 转卖是什么意思| 海带绿豆汤有什么功效| 碳水是什么| 炖鸡汤放什么调料| 肝不好应该吃什么| 6月16是什么星座| 血压高为什么| 细菌是什么生殖| 农历五月初五是什么节日| 虹字五行属什么| 腰椎生理曲度变直什么意思| 伤口换药挂什么科啊| 疣有什么危害| 人生座右铭是什么意思| 希特勒为什么恨犹太人| 50至60岁吃什么钙片好| 逆水行舟什么意思| 慢性气管炎吃什么药最有效| 4.8什么星座| 生理期可以吃什么| 看颈椎病挂什么科| 高油酸是什么意思| 手脱皮吃什么维生素| 为什么同房过后会出血| 血钾高吃什么药| 大便发绿色是什么原因| 射手座和什么座最配| 霉菌阳性是什么意思| 正局级什么级别| 梵天是什么意思| 宝宝大便有泡沫是什么原因| 细菌感染有什么症状表现| 朋友过生日送什么好| 10.11是什么星座| 脾肾阳虚吃什么药最好| 积液是什么东西| 骨量偏高是什么原因| 经常头晕头疼是什么原因| 无学历学什么技术好| 健康证是什么| 脸浮肿是什么原因| 擦枪走火什么意思| 什么钱最不值钱| 福兮祸兮是什么意思| 木乐念什么| 胃疼胃胀用什么药效果最好| 一直倒霉预示着什么| 林彪为什么要叛逃| 决明子泡水喝有什么功效| 甲基蓝治疗什么鱼病| 官宣是什么意思| 灵魂是什么意思| 生理曲度变直什么意思| 梦龙什么口味好吃| 百度Jump to content

低烧是什么症状和感觉

From Wikipedia, the free encyclopedia
百度 随着精品战略的不断推进,OPPO必将更加深入用户内心,得到越来越多用户的选择,真正成为最受年轻人喜爱的手机品牌。

In mathematics, an injective function (also known as injection, or one-to-one function[1] ) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x1x2 implies f(x1) ≠ f(x2) (equivalently by contraposition, f(x1) = f(x2) implies x1 = x2). In other words, every element of the function's codomain is the image of at most one element of its domain.[2] The term one-to-one function must not be confused with one-to-one correspondence that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain.

A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an injective homomorphism is also called a monomorphism. However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism.[3] This is thus a theorem that they are equivalent for algebraic structures; see Homomorphism § Monomorphism for more details.

A function that is not injective is sometimes called many-to-one.[2]

Definition

[edit]
An injective function, which is not also surjective.

Let be a function whose domain is a set The function is said to be injective provided that for all and in if then ; that is, implies Equivalently, if then in the contrapositive statement.

Symbolically, which is logically equivalent to the contrapositive,[4]An injective function (or, more generally, a monomorphism) is often denoted by using the specialized arrows ? or ? (for example, or ), although some authors specifically reserve ? for an inclusion map.[5]

Examples

[edit]

For visual examples, readers are directed to the gallery section.

  • For any set and any subset the inclusion map (which sends any element to itself) is injective. In particular, the identity function is always injective (and in fact bijective).
  • If the domain of a function is the empty set, then the function is the empty function, which is injective.
  • If the domain of a function has one element (that is, it is a singleton set), then the function is always injective.
  • The function defined by is injective.
  • The function defined by is not injective, because (for example) However, if is redefined so that its domain is the non-negative real numbers [0,+∞), then is injective.
  • The exponential function defined by is injective (but not surjective, as no real value maps to a negative number).
  • The natural logarithm function defined by is injective.
  • The function defined by is not injective, since, for example,

More generally, when and are both the real line then an injective function is one whose graph is never intersected by any horizontal line more than once. This principle is referred to as the horizontal line test.[2]

Injections can be undone

[edit]

Functions with left inverses are always injections. That is, given if there is a function such that for every , , then is injective. The proof is that

In this case, is called a retraction of Conversely, is called a section of

Conversely, every injection with a non-empty domain has a left inverse . It can be defined by choosing an element in the domain of and setting to the unique element of the pre-image (if it is non-empty) or to (otherwise).[6]

The left inverse is not necessarily an inverse of because the composition in the other order, may differ from the identity on In other words, an injective function can be "reversed" by a left inverse, but is not necessarily invertible, which requires that the function is bijective.

Injections may be made invertible

[edit]

In fact, to turn an injective function into a bijective (hence invertible) function, it suffices to replace its codomain by its actual image That is, let such that for all ; then is bijective. Indeed, can be factored as where is the inclusion function from into

More generally, injective partial functions are called partial bijections.

Other properties

[edit]
The composition of two injective functions is injective.
  • If and are both injective then is injective.
  • If is injective, then is injective (but need not be).
  • is injective if and only if, given any functions whenever then In other words, injective functions are precisely the monomorphisms in the category Set of sets.
  • If is injective and is a subset of then Thus, can be recovered from its image
  • If is injective and and are both subsets of then
  • Every function can be decomposed as for a suitable injection and surjection This decomposition is unique up to isomorphism, and may be thought of as the inclusion function of the range of as a subset of the codomain of
  • If is an injective function, then has at least as many elements as in the sense of cardinal numbers. In particular, if, in addition, there is an injection from to then and have the same cardinal number. (This is known as the Cantor–Bernstein–Schroeder theorem.)
  • If both and are finite with the same number of elements, then is injective if and only if is surjective (in which case is bijective).
  • An injective function which is a homomorphism between two algebraic structures is an embedding.
  • Unlike surjectivity, which is a relation between the graph of a function and its codomain, injectivity is a property of the graph of the function alone; that is, whether a function is injective can be decided by only considering the graph (and not the codomain) of

Proving that functions are injective

[edit]

A proof that a function is injective depends on how the function is presented and what properties the function holds. For functions that are given by some formula there is a basic idea. We use the definition of injectivity, namely that if then [7]

Here is an example:

Proof: Let Suppose So implies which implies Therefore, it follows from the definition that is injective.

There are multiple other methods of proving that a function is injective. For example, in calculus if is a differentiable function defined on some interval, then it is sufficient to show that the derivative is always positive or always negative on that interval. In linear algebra, if is a linear transformation it is sufficient to show that the kernel of contains only the zero vector. If is a function with finite domain it is sufficient to look through the list of images of each domain element and check that no image occurs twice on the list.

A graphical approach for a real-valued function of a real variable is the horizontal line test. If every horizontal line intersects the curve of in at most one point, then is injective or one-to-one.

[edit]

See also

[edit]

Notes

[edit]
  1. ^ Sometimes one-one function, in Indian mathematical education. "Chapter 1:Relations and functions" (PDF). Archived (PDF) from the original on Dec 26, 2023 – via NCERT.
  2. ^ a b c "Injective, Surjective and Bijective". Math is Fun. Retrieved 2025-08-06.
  3. ^ "Section 7.3 (00V5): Injective and surjective maps of presheaves". The Stacks project. Retrieved 2025-08-06.
  4. ^ Farlow, S. J. "Section 4.2 Injections, Surjections, and Bijections" (PDF). Mathematics & Statistics - University of Maine. Archived from the original (PDF) on Dec 7, 2019. Retrieved 2025-08-06.
  5. ^ "What are usual notations for surjective, injective and bijective functions?". Mathematics Stack Exchange. Retrieved 2025-08-06.
  6. ^ Unlike the corresponding statement that every surjective function has a right inverse, this does not require the axiom of choice, as the existence of is implied by the non-emptiness of the domain. However, this statement may fail in less conventional mathematics such as constructive mathematics. In constructive mathematics, the inclusion of the two-element set in the reals cannot have a left inverse, as it would violate indecomposability, by giving a retraction of the real line to the set {0,1}.
  7. ^ Williams, Peter (Aug 21, 1996). "Proving Functions One-to-One". Department of Mathematics at CSU San Bernardino Reference Notes Page. Archived from the original on 4 June 2017.

References

[edit]
[edit]
2024年五行属什么 梅毒查血查什么项目 1月29号什么星座 什么然而止 窦道是什么意思
海螺姑娘是什么意思 斗破苍穹什么时候出的 月经期间喝什么好排毒排污血 两个马念什么 4.19是什么星座
甲亢与甲减有什么区别 民族是什么意思 溃疡是什么病 颈部出汗是什么原因 什么快递比较快
什么入胜 38码衣服相当于什么码 img是什么意思 丹田是什么器官 佛跳墙是什么东西
健康证都检查什么项目cj623037.com 油面筋是什么做的hcv8jop3ns2r.cn 黄豆芽炒什么好吃hcv9jop3ns3r.cn 戴珍珠手链有什么好处hcv7jop6ns2r.cn 澳大利亚人说什么语言hcv9jop6ns6r.cn
下肢浮肿是什么原因hcv9jop6ns4r.cn 右肺上叶为什么恶性多hcv8jop6ns7r.cn 属猪的跟什么属相最配hcv9jop0ns1r.cn 雾化器是干什么用的hcv8jop4ns9r.cn c反应蛋白偏高说明什么hcv7jop9ns1r.cn
吃什么减肥瘦肚子cj623037.com 气溶胶传播是什么意思hcv9jop8ns3r.cn 多发性硬化是什么病shenchushe.com 白脉病是什么病hcv8jop7ns7r.cn 万圣节什么时候yanzhenzixun.com
下肢肿胀是什么原因yanzhenzixun.com gy是什么颜色hcv8jop4ns8r.cn 脚底干燥是什么原因hcv8jop7ns7r.cn 肾阳虚是什么意思hcv8jop2ns4r.cn 广西有什么特产hcv7jop5ns6r.cn
百度 技术支持:蜘蛛池 www.kelongchi.com