男人容易出汗是什么原因造成的| 判缓刑是什么意思| 2月2日什么星座| hys是什么意思| 吃什么对肺好| 酒蒙子是什么意思| 煮方便面什么时候放鸡蛋| 九牛一毛指什么生肖| 慢性前列腺炎有什么症状| 肚子胀气吃什么食物| 都有什么花| 参加追悼会穿什么衣服| 呃逆是什么意思| 喝菊花茶有什么功效| 为什么会无缘无故长痣| 霸王别姬是什么生肖| 给老师送什么礼物好| 什么把什么造句子| 附件炎吃什么药效果好| 头孢属于什么类药物| 吃头孢不能吃什么| 外甥像舅舅有什么说法| 1989年什么生肖| 1988年是什么生肖| 记忆力不好吃什么| 待字闺中什么意思| 肝掌是什么症状| 心慌心闷是什么原因| 降火吃什么| hpv12种高危型阳性是什么意思| 为什么人会死| angelababy是什么意思| 汕头有什么好玩的地方| 佰草集属于什么档次| 诊断是什么意思| 3月12是什么星座| ems是什么| 凝血酶时间是什么意思| 五行缺水是什么意思| 肛门瘙痒看什么科| 加持是什么意思| 什么是多囊卵巢综合症| 5月26是什么星座| 灵什么意思| 肌无力吃什么药| 脸上长痘痘用什么药膏效果好| 辛巳五行属什么| 一个三点水一个令念什么| 酒是什么味道| 金樱子配什么才壮阳| 黑枣是什么枣| 麻黄碱是什么| 新生儿超敏c反应蛋白高说明什么| 榴莲和什么不能一起吃| 湿度大对人体有什么影响| 久坐睾丸疼是什么原因| 10月出生是什么星座| 今天属什么生肖老黄历| 什么花最香| 为什么小便是红色的尿| 必要性是什么意思| 92年出生属什么生肖| 宫腔少量积液是什么意思| 买车选什么品牌| 萤火虫为什么越来越少| 公明仪属什么生肖| 脍炙人口什么意思| pdo是什么意思| 死刑是什么意思| 脾胃气滞吃什么中成药| 什么牌子奶粉最好| 胃不好不能吃什么| 1129是什么星座| kms是什么药| 脑血栓是什么原因引起的| 甲状腺毒症是什么意思| 湖北有什么好玩的地方| 大师是什么意思| dvd是什么意思| 大便每天四五次是什么病| 子宫附件包括什么| utc是什么| 神经性头痛吃什么药好| 孕妇可以用什么护肤品| 3个土念什么| 羊水多对胎儿有什么影响| 心阳虚吃什么药| 乌龙茶属于什么茶| 专员是什么职位| 感冒有黄痰是什么原因| 党参和丹参有什么区别| 秋葵有什么营养价值| 菊花和金银花一起泡水有什么效果| 血压偏低有什么症状| 严重贫血的人吃什么补血最快| 莴笋不能和什么一起吃| 翊字五行属什么| 什么叫凤凰男| hitachi是什么品牌| 心慌心悸是什么原因| 湿气重喝什么| 纾是什么意思| 座是什么结构| 血糖突然升高是什么原因| 9.22什么星座| 三头六臂是什么生肖| 12583是什么电话| 少年班是什么意思| 阴茎进入阴道是什么感觉| 颈椎骨质增生吃什么药效果好| 元参别名叫什么| 天乙贵人什么意思| 传字五行属什么| 尿等待是什么原因| pcr是什么意思| 手串什么材料的最好| 为什么一睡觉就做梦| 相亲第一次见面送什么礼物好| 江西有什么好玩的景点| 菠萝和凤梨有什么区别| 一见钟情是什么感觉| 流产可以吃什么水果| 目赤肿痛吃什么药最好| 肝硬化有什么症状表现| bpa是什么材料| 子宫内膜病变有什么症状| 什么什么有力| 卧室养什么花好| 孕期不能吃什么| 婚前体检都检查什么| 耳朵闷闷的堵住的感觉是什么原因| 咳嗽能吃什么水果最好| 平纹布是什么面料| 什么是朋友| 肝内囊性灶什么意思| 头晕冒冷汗是什么原因| 腹胀是什么病的前兆| 女生腋毛多是什么原因| 斐乐属于什么档次| 红豆大红豆芋头是什么歌| 为什么叫汉族| 丽江机场叫什么名字| 芒果不能和什么水果一起吃| camel是什么牌子| covu是什么药| 无患子为什么叫鬼见愁| 有什么工作| 辣椒油用什么能洗掉| 鹿茸是鹿的什么部位| mchc偏低是什么意思| 小孩有积食吃什么调理| 肠梗阻是什么| 什么是类风湿性关节炎| 喝咖啡有什么好处和坏处| 预防脑梗吃什么药| 蛋白电泳是查什么的| cpk是什么| 四川的耗儿鱼是什么鱼| 酸碱度偏高是什么意思| 昆仑玉什么颜色最贵| 黄疸是什么引起的| 耳鸣什么原因引起的| 虾米吃什么| 追溯码是什么意思| 石斛是什么| 鱼在鱼缸底部不动为什么| 脱氢酶高是什么原因| 贾宝玉的玉是什么来历| 旨在是什么意思| 口臭严重吃什么药好得快| 颅脑平扫是检查什么| 诱发电位是检查什么病的| 小孩突然抽搐失去意识是什么原因| 二级医院是什么意思| 鲁班是什么家| 下巴长痘痘用什么药| 狮子座和什么座最不配| 系带割掉了有什么影响| 什么是无机盐| 补体c1q偏高说明什么| 咦惹是什么意思| 牙龈充血是什么原因| 洗衣机启动不了是什么原因| 脚气用什么药膏| 康桑密达是什么意思| 曹操是什么生肖| 逆行是什么意思| 正月十二是什么星座| 南京有什么好玩的| 小肠气是什么症状| 大象的天敌是什么动物| 葛根长什么样子图片| 吃大枣有什么好处| 朱砂痣代表什么| doki是什么意思| 海棠果什么时候成熟| mdz0.2是什么药| 吃什么排宿便清肠彻底| 糖醋里脊是什么肉做的| 打胎后要注意什么| 珍珠米是什么米| 吃什么软化血管| 痛经可以吃什么水果| 星期天为什么不叫星期七| 私募是什么| 天天吃玉米有什么好处和坏处| 脆皮是什么意思| 植物神经是什么| 农历六月是什么生肖| 辣椒是什么时候传入中国的| 易经和周易有什么区别| 牙刷什么样的刷毛最好| 11月18是什么星座| 什么的海风| 自在什么意思| 1月28号是什么星座| 呸是什么意思| 红细胞压积是什么意思| 生忌是什么意思| 日在校园讲的什么| uv是什么| 修为是什么意思| 明油是什么油| 空腹打嗝是什么原因引起的| 戏是什么意思| 眼睛散光和近视有什么区别| 尿无力是什么原因| 抢七是什么意思| 可以组什么词语| 喝生姜水有什么好处| 白带正常是什么颜色| 会车是什么意思| 皮肤黄是什么原因| 吃糖醋蒜有什么好处和坏处| 老年人缺钾吃什么好| 口干舌燥吃点什么药| 什么情况下能吃脑络通| 做什么运动可以长高| 咽炎什么症状| 全血细胞减少是什么意思| 世界上最坚硬的东西是什么| 河南什么烟出名| 学富五车是什么意思| b是什么单位| 晴雨表是什么意思| cba什么时候开始比赛| 十一点半是什么时辰| 格桑花的花语是什么| 5月23日是什么星座| 赤潮是什么意思| 正官正印是什么意思| 格斗和散打有什么区别| 三个火是什么字念什么| 鸡飞狗跳是指什么生肖| 农历六月十九是什么日子| 胸小是缺少什么营养| 牙齿黄是什么原因| 豆沫是什么做的| 并是什么意思| 刚刚邹城出什么大事了| 国花是什么花| 下颌关节紊乱挂什么科| 再三的意思是什么| 来例假能吃什么水果| 百度Jump to content

台媒:加籍香港夫妇确认遇难 台湾花莲地震已致12人死亡

From Wikipedia, the free encyclopedia
百度 来日本留学相对欧美国家每年20万-50万要省太多。

In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution).

Every Boolean algebra gives rise to a Boolean ring, and vice versa, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨). However, the theory of Boolean rings has an inherent asymmetry between the two operators, while the axioms and theorems of Boolean algebra express the symmetry of the theory described by the duality principle.[1]

Boolean lattice of subsets

History

[edit]

The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English mathematician. He introduced the algebraic system initially in a small pamphlet, The Mathematical Analysis of Logic, published in 1847 in response to an ongoing public controversy between Augustus De Morgan and William Hamilton, and later as a more substantial book, The Laws of Thought, published in 1854. Boole's formulation differs from that described above in some important respects. For example, conjunction and disjunction in Boole were not a dual pair of operations. Boolean algebra emerged in the 1860s, in papers written by William Jevons and Charles Sanders Peirce. The first systematic presentation of Boolean algebra and distributive lattices is owed to the 1890 Vorlesungen of Ernst Schr?der. The first extensive treatment of Boolean algebra in English is A. N. Whitehead's 1898 Universal Algebra. Boolean algebra as an axiomatic algebraic structure in the modern axiomatic sense begins with a 1904 paper by Edward V. Huntington. Boolean algebra came of age as serious mathematics with the work of Marshall Stone in the 1930s, and with Garrett Birkhoff's 1940 Lattice Theory. In the 1960s, Paul Cohen, Dana Scott, and others found deep new results in mathematical logic and axiomatic set theory using offshoots of Boolean algebra, namely forcing and Boolean-valued models.

Definition

[edit]

A Boolean algebra is a set A, equipped with two binary operations (called "meet" or "and"), (called "join" or "or"), a unary operation ? (called "complement" or "not") and two elements 0 and 1 in A (called "bottom" and "top", or "least" and "greatest" element, also denoted by the symbols and ?, respectively), such that for all elements a, b and c of A, the following axioms hold:[2]

a ∨ (bc) = (ab) ∨ c a ∧ (bc) = (ab) ∧ c associativity
ab = ba ab = ba commutativity
a ∨ (ab) = a a ∧ (ab) = a absorption
a ∨ 0 = a a ∧ 1 = a identity
a ∨ (bc) = (ab) ∧ (ac)   a ∧ (bc) = (ab) ∨ (ac)   distributivity
a ∨ ?a = 1 a ∧ ?a = 0 complements

Note, however, that the absorption law and even the associativity law can be excluded from the set of axioms as they can be derived from the other axioms (see Proven properties).

A Boolean algebra with only one element is called a trivial Boolean algebra or a degenerate Boolean algebra. (In older works, some authors required 0 and 1 to be distinct elements in order to exclude this case.)[citation needed]

It follows from the last three pairs of axioms above (identity, distributivity and complements), or from the absorption axiom, that

a = ba     if and only if     ab = b.

The relation defined by ab if these equivalent conditions hold, is a partial order with least element 0 and greatest element 1. The meet ab and the join ab of two elements coincide with their infimum and supremum, respectively, with respect to ≤.

The first four pairs of axioms constitute a definition of a bounded lattice.

It follows from the first five pairs of axioms that any complement is unique.

The set of axioms is self-dual in the sense that if one exchanges with and 0 with 1 in an axiom, the result is again an axiom. Therefore, by applying this operation to a Boolean algebra (or Boolean lattice), one obtains another Boolean algebra with the same elements; it is called its dual.[3]

Examples

[edit]
  • The simplest non-trivial Boolean algebra, the two-element Boolean algebra, has only two elements, 0 and 1, and is defined by the rules:
0 1
0 0 0
1 0 1
0 1
0 0 1
1 1 1
a 0 1
?a 1 0
  • It has applications in logic, interpreting 0 as false, 1 as true, as and, as or, and ? as not. Expressions involving variables and the Boolean operations represent statement forms, and two such expressions can be shown to be equal using the above axioms if and only if the corresponding statement forms are logically equivalent.
  • The two-element Boolean algebra is also used for circuit design in electrical engineering;[note 1] here 0 and 1 represent the two different states of one bit in a digital circuit, typically high and low voltage. Circuits are described by expressions containing variables, and two such expressions are equal for all values of the variables if and only if the corresponding circuits have the same input–output behavior. Furthermore, every possible input–output behavior can be modeled by a suitable Boolean expression.
  • The two-element Boolean algebra is also important in the general theory of Boolean algebras, because an equation involving several variables is generally true in all Boolean algebras if and only if it is true in the two-element Boolean algebra (which can be checked by a trivial brute force algorithm for small numbers of variables). This can for example be used to show that the following laws (Consensus theorems) are generally valid in all Boolean algebras:
    • (ab) ∧ (?ac) ∧ (bc) ≡ (ab) ∧ (?ac)
    • (ab) ∨ (?ac) ∨ (bc) ≡ (ab) ∨ (?ac)
  • The power set (set of all subsets) of any given nonempty set S forms a Boolean algebra, an algebra of sets, with the two operations ∨ := ∪ (union) and ∧ := ∩ (intersection). The smallest element 0 is the empty set and the largest element 1 is the set S itself.
  • After the two-element Boolean algebra, the simplest Boolean algebra is that defined by the power set of two atoms:
0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1
0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1
x 0 a b 1
?x 1 b a 0
  • The set A of all subsets of S that are either finite or cofinite is a Boolean algebra and an algebra of sets called the finite–cofinite algebra. If S is infinite then the set of all cofinite subsets of S, which is called the Fréchet filter, is a free ultrafilter on A. However, the Fréchet filter is not an ultrafilter on the power set of S.
  • Starting with the propositional calculus with κ sentence symbols, form the Lindenbaum algebra (that is, the set of sentences in the propositional calculus modulo logical equivalence). This construction yields a Boolean algebra. It is in fact the free Boolean algebra on κ generators. A truth assignment in propositional calculus is then a Boolean algebra homomorphism from this algebra to the two-element Boolean algebra.
  • Given any linearly ordered set L with a least element, the interval algebra is the smallest Boolean algebra of subsets of L containing all of the half-open intervals [a, b) such that a is in L and b is either in L or equal to . Interval algebras are useful in the study of Lindenbaum–Tarski algebras; every countable Boolean algebra is isomorphic to an interval algebra.
Hasse diagram of the Boolean algebra of divisors of 30.
  • For any natural number n, the set of all positive divisors of n, defining ab if a divides b, forms a distributive lattice. This lattice is a Boolean algebra if and only if n is square-free. The bottom and the top elements of this Boolean algebra are the natural numbers 1 and n, respectively. The complement of a is given by n/a. The meet and the join of a and b are given by the greatest common divisor (gcd) and the least common multiple (lcm) of a and b, respectively. The ring addition a + b is given by lcm(a, b) / gcd(a, b). The picture shows an example for n = 30. As a counter-example, considering the non-square-free n = 60, the greatest common divisor of 30 and its complement 2 would be 2, while it should be the bottom element 1.
  • Other examples of Boolean algebras arise from topological spaces: if X is a topological space, then the collection of all subsets of X that are both open and closed forms a Boolean algebra with the operations ∨ := ∪ (union) and ∧ := ∩ (intersection).
  • If R is an arbitrary ring then its set of central idempotents, which is the set

becomes a Boolean algebra when its operations are defined by ef := e + f ? ef and ef := ef.

Homomorphisms and isomorphisms

[edit]

A homomorphism between two Boolean algebras A and B is a function f : AB such that for all a, b in A:

f(ab) = f(a) ∨ f(b),
f(ab) = f(a) ∧ f(b),
f(0) = 0,
f(1) = 1.

It then follows that f(?a) = ?f(a) for all a in A. The class of all Boolean algebras, together with this notion of morphism, forms a full subcategory of the category of lattices.

An isomorphism between two Boolean algebras A and B is a homomorphism f : AB with an inverse homomorphism, that is, a homomorphism g : BA such that the composition g ° f : AA is the identity function on A, and the composition f ° g : BB is the identity function on B. A homomorphism of Boolean algebras is an isomorphism if and only if it is bijective.

Boolean rings

[edit]

Every Boolean algebra (A, ∧, ∨) gives rise to a ring (A, +, ·) by defining a + b := (a ∧ ?b) ∨ (b ∧ ?a) = (ab) ∧ ?(ab) (this operation is called symmetric difference in the case of sets and XOR in the case of logic) and a · b := ab. The zero element of this ring coincides with the 0 of the Boolean algebra; the multiplicative identity element of the ring is the 1 of the Boolean algebra. This ring has the property that a · a = a for all a in A; rings with this property are called Boolean rings.

Conversely, if a Boolean ring A is given, we can turn it into a Boolean algebra by defining xy := x + y + (x · y) and xy := x · y.[4][5] Since these two constructions are inverses of each other, we can say that every Boolean ring arises from a Boolean algebra, and vice versa. Furthermore, a map f : AB is a homomorphism of Boolean algebras if and only if it is a homomorphism of Boolean rings. The categories of Boolean rings and Boolean algebras are equivalent;[6] in fact the categories are isomorphic.

Hsiang (1985) gave a rule-based algorithm to check whether two arbitrary expressions denote the same value in every Boolean ring. More generally, Boudet, Jouannaud, and Schmidt-Schau? (1989) gave an algorithm to solve equations between arbitrary Boolean-ring expressions. Employing the similarity of Boolean rings and Boolean algebras, both algorithms have applications in automated theorem proving.

Ideals and filters

[edit]

An ideal of the Boolean algebra A is a nonempty subset I such that for all x, y in I we have xy in I and for all a in A we have ax in I. This notion of ideal coincides with the notion of ring ideal in the Boolean ring A. An ideal I of A is called prime if IA and if ab in I always implies a in I or b in I. Furthermore, for every aA we have that a ∧ −a = 0 ∈ I, and then if I is prime we have aI or aI for every aA. An ideal I of A is called maximal if IA and if the only ideal properly containing I is A itself. For an ideal I, if a ? I and a ? I, then I ∪ {a} or I ∪ {−a} is contained in another proper ideal J. Hence, such an I is not maximal, and therefore the notions of prime ideal and maximal ideal are equivalent in Boolean algebras. Moreover, these notions coincide with ring theoretic ones of prime ideal and maximal ideal in the Boolean ring A.

The dual of an ideal is a filter. A filter of the Boolean algebra A is a nonempty subset p such that for all x, y in p we have xy in p and for all a in A we have ax in p. The dual of a maximal (or prime) ideal in a Boolean algebra is ultrafilter. Ultrafilters can alternatively be described as 2-valued morphisms from A to the two-element Boolean algebra. The statement every filter in a Boolean algebra can be extended to an ultrafilter is called the ultrafilter lemma and cannot be proven in Zermelo–Fraenkel set theory (ZF), if ZF is consistent. Within ZF, the ultrafilter lemma is strictly weaker than the axiom of choice. The ultrafilter lemma has many equivalent formulations: every Boolean algebra has an ultrafilter, every ideal in a Boolean algebra can be extended to a prime ideal, etc.

Representations

[edit]

It can be shown that every finite Boolean algebra is isomorphic to the Boolean algebra of all subsets of a finite set. Therefore, the number of elements of every finite Boolean algebra is a power of two.

Stone's celebrated representation theorem for Boolean algebras states that every Boolean algebra A is isomorphic to the Boolean algebra of all clopen sets in some (compact totally disconnected Hausdorff) topological space.

Axiomatics

[edit]

The first axiomatization of Boolean lattices/algebras in general was given by the English philosopher and mathematician Alfred North Whitehead in 1898.[7][8] It included the above axioms and additionally x ∨ 1 = 1 and x ∧ 0 = 0. In 1904, the American mathematician Edward V. Huntington (1874–1952) gave probably the most parsimonious axiomatization based on , , ?, even proving the associativity laws (see box).[9] He also proved that these axioms are independent of each other.[10] In 1933, Huntington set out the following elegant axiomatization for Boolean algebra.[11] It requires just one binary operation + and a unary functional symbol n, to be read as 'complement', which satisfy the following laws:

  1. Commutativity: x + y = y + x.
  2. Associativity: (x + y) + z = x + (y + z).
  3. Huntington equation: n(n(x) + y) + n(n(x) + n(y)) = x.

Herbert Robbins immediately asked: If the Huntington equation is replaced with its dual, to wit:

  1. Robbins Equation: n(n(x + y) + n(x + n(y))) = x,

do (1), (2), and (4) form a basis for Boolean algebra? Calling (1), (2), and (4) a Robbins algebra, the question then becomes: Is every Robbins algebra a Boolean algebra? This question (which came to be known as the Robbins conjecture) remained open for decades, and became a favorite question of Alfred Tarski and his students. In 1996, William McCune at Argonne National Laboratory, building on earlier work by Larry Wos, Steve Winker, and Bob Veroff, answered Robbins's question in the affirmative: Every Robbins algebra is a Boolean algebra. Crucial to McCune's proof was the computer program EQP he designed. For a simplification of McCune's proof, see Dahn (1998).

Further work has been done for reducing the number of axioms; see Minimal axioms for Boolean algebra.

Generalizations

[edit]

Removing the requirement of existence of a unit from the axioms of Boolean algebra yields "generalized Boolean algebras". Formally, a distributive lattice B is a generalized Boolean lattice, if it has a smallest element 0 and for any elements a and b in B such that ab, there exists an element x such that ax = 0 and ax = b. Defining a \ b as the unique x such that (ab) ∨ x = a and (ab) ∧ x = 0, we say that the structure (B, ∧, ∨, \, 0) is a generalized Boolean algebra, while (B, ∨, 0) is a generalized Boolean semilattice. Generalized Boolean lattices are exactly the ideals of Boolean lattices.

A structure that satisfies all axioms for Boolean algebras except the two distributivity axioms is called an orthocomplemented lattice. Orthocomplemented lattices arise naturally in quantum logic as lattices of closed linear subspaces for separable Hilbert spaces.

See also

[edit]

Notes

[edit]
  1. ^ Strictly, electrical engineers tend to use additional states to represent other circuit conditions such as high impedance - see IEEE 1164 or IEEE 1364.

References

[edit]
  1. ^ Givant & Halmos 2009, p. 20.
  2. ^ Davey & Priestley 1990, pp. 109, 131, 144.
  3. ^ Goodstein 2012, p. 21ff.
  4. ^ Stone 1936.
  5. ^ Hsiang 1985, p. 260.
  6. ^ Cohn 2003, p. 81.
  7. ^ Padmanabhan & Rudeanu 2008, p. 73.
  8. ^ Whitehead 1898, p. 37.
  9. ^ Huntington 1904, pp. 292–293.
  10. ^ Huntington 1904, p. 296.
  11. ^ Huntington 1933a.

Works cited

[edit]

General references

[edit]
[edit]
想怀孕需要检查什么项目 为什么吃荔枝会上火 明前茶什么意思 缺少雌激素的女性会有什么症状 吃了阿莫西林不能吃什么
牛大力泡酒有什么功效 杜冷丁是什么药 兰花是什么颜色 牙龈炎吃什么药最有效 什么是七情六欲
广东有什么特产 腰间盘突出吃什么药好 什么是有限公司 为什么光吃不拉大便 四大菩萨分别保佑什么
吃什么油好 灰色鞋子搭配什么颜色裤子 为什么隔夜茶不能喝 什么是同位素 什么叫实性结节
泛醇是什么hcv8jop3ns2r.cn 感冒什么症状hcv8jop3ns9r.cn 地瓜是什么hcv8jop2ns1r.cn 脚底板发热是什么原因hcv9jop0ns0r.cn 胸膜增厚吃什么药hcv8jop2ns0r.cn
忠武路演员是什么意思hcv8jop5ns1r.cn 小腹疼挂什么科hcv8jop7ns5r.cn 海参是补什么的hcv8jop7ns7r.cn 吃什么东西能养胃creativexi.com 抹茶是什么茶叶做的hcv8jop6ns2r.cn
脾胃虚寒吃什么hcv8jop4ns1r.cn 吃什么都是苦的是怎么回事hcv9jop3ns1r.cn 三颗星是什么军衔fenrenren.com 应接不暇的暇是什么意思hcv9jop3ns8r.cn 胃热吃什么hcv8jop1ns4r.cn
气血不足吃什么食物好hcv8jop7ns8r.cn 孩子皮肤黑是什么原因hcv8jop2ns6r.cn 贫血吃什么食物最好creativexi.com 白玫瑰花语是什么意思hcv9jop8ns1r.cn p53野生型是什么意思hcv7jop9ns7r.cn
百度