梦见买棺材是什么征兆| 一路走好是什么意思| 退化是什么意思| plt是什么| 九里香什么时候开花| 起付线是什么意思| 薄姬为什么讨厌窦漪房| 负面影响是什么意思| 宫寒吃什么药| 尿里红细胞高什么原因| 男性霉毒是什么症状| 眼睛无神呆滞什么原因| 石榴石是什么材质| 脾切除对身体有什么影响| 天德月德是什么意思| 九月二十九号是什么星座| 口臭舌苔白厚吃什么药| 啤酒加生鸡蛋一起喝有什么效果| 女人为什么会阳虚| 咳嗽吃什么好得快| 100元人民币什么时候发行的| 1103是什么星座| 淋球菌培养是检查什么| hpv是什么| 散瞳后需要注意什么| elite是什么意思| 体态是什么意思| 甲状腺结节吃什么药| 什么是唐氏综合征| 宝宝什么时候开始说话| 睾丸肿痛吃什么药| 遇人不淑是什么意思| 1月8号是什么星座| 深海鱼油什么时候吃最好| 懵的意思是什么| c肽测定是什么意思| 爸爸的奶奶叫什么| 梦见自己得了绝症预示着什么| 安宫丸什么时候吃| 肛裂用什么药| 云州是现在的什么地方| 尿毒清颗粒主治什么病| pd是什么病| 吴刚和嫦娥什么关系| 做梦梦见捡钱是什么意思| kfc是什么| 眼屎多用什么眼药水| 什么是oa| 血蛋白低会有什么影响| 一月十八号是什么星座| 心绞痛是什么病| 阿弥陀佛是什么意思| 外阴瘙痒用什么药膏| 早期胃癌有什么症状| ABB的词语有什么| 汗颜是什么意思| 融合是什么意思| 不解之谜的意思是什么| 蜂蜜的波美度是什么意思| 柏油是什么| 农历六月十八是什么日子| 零四年属什么| 嫑怹是什么意思| 头汗特别多是什么原因| 尿白细胞阳性什么意思| 加拿大现在什么季节| 硫酸对人体有什么危害| 奶水不足吃什么下奶多| 陈赫的老婆叫什么名字| 寒湿吃什么中成药| 胃病吃什么药最好| 小孩睡觉说梦话是什么原因| 4月3日是什么星座| 尿常规能查出什么病| 圣母娘娘是什么神| 医院规培是什么意思| 滴虫性阴炎有什么症状表现| 诱导是什么意思| 什么时候跑步减肥效果最好| 上升星座代表什么| 32岁属什么生肖| 白痰是什么原因| 牛吃什么| 预防更年期提前应该吃点什么药| 深是什么生肖| 天意是什么意思| 怀孕第一个月有什么反应| 九月初四是什么星座| 孕晚期羊水多了对宝宝有什么影响| 护士长是什么级别| 水瓜壳煲水有什么功效| 肺挂什么科| 牛字旁与什么有关| 窒息是什么意思| 斑秃挂什么科| 男生适合养什么小型犬| 吃冬瓜有什么好处| aj是什么牌子| 心热是什么原因造成的| 来月经能吃什么水果| 熟啤酒是什么意思| 黄铜刮痧板有什么好处| 固体饮料是什么意思| aone是什么牌子| 女人吃什么补气血| 颌下淋巴结肿大挂什么科| 脑出血有什么后遗症| 四离日是什么意思| 什么的小鸡| 盗墓笔记讲了什么| 办银行卡需要什么条件| 抽血挂什么科| 西瓜像什么比喻句| 腋下发黑是什么原因| 热疹症状该用什么药膏| 阴囊湿疹用什么药膏效果最好| 扁桃体经常发炎是什么原因| 大方得体是什么意思| candies什么意思| 黑头发有什么好处| 公历年份是什么意思| 什么的流| 强直性脊柱炎看什么科| 阴历7月22什么日子| 室内用什么隔墙最便宜| 大什么什么手| 维生素b什么时候吃效果最好| 什么是乳清蛋白粉| 身先士卒是什么意思| 查血型挂什么科| 女人脚心发热吃什么药| 经常玩手机有什么危害| 舌根部淋巴滤泡增生吃什么药| 眼睛跳是什么原因| 抖机灵是什么意思| 什么是面首| 健康管理是干什么的| 肛门出血是什么原因| 脸上长粉刺是什么原因引起的| 笑什么如花| 男性尿黄是什么原因| 女生怀孕的前兆是什么| 衣锦还乡是什么意思| 阴道发炎用什么药| 心服口服的意思是什么| 腰疼用什么药| 胸闷什么感觉| 小龙虾吃什么食物| 戊五行属什么| 来例假能吃什么水果| 人嗜睡是什么原因| 番薯是什么| 镜片什么材质好| 什么时候喝牛奶效果最佳| 什么食物含碘高| 免疫肝是什么病| 焗油是什么意思| 心房扑动是什么意思| 什么满天下| 鱼翅配什么煲汤最好| 属马的男生和什么属相最配| 截瘫是什么意思| 鼓风机是干什么用的| 什么化痰效果最好最快| 六七是什么意思| 雪糕是什么做的| 卤水是什么成分| 什么竹子| 路引是什么| 便秘什么原因引起的| 腿发麻是什么原因| 心气不足吃什么中成药| 庆大霉素治疗鱼什么病| 狂犬疫苗为什么要打五针| 蠼螋吃什么| 玄学什么意思| 疱疹用什么药最好| pd医学上是什么意思| 长命锁一般由什么人送| 小米不能和什么一起吃| 囊肿是什么原因引起的| 夏至要吃什么| 25羟基维生素d是什么| 口干口苦口臭吃什么药| 日入是什么时辰| 腿酸是什么原因| 护照是什么| 类固醇是什么东西| 米虫长什么样| 生育能力检查挂什么科| 乳腺导管扩张是什么意思严重吗| 生蚝补什么| 蚰蜒吃什么| 肠息肉是什么症状| 卡介苗为什么会留疤| 俄罗斯为什么要打乌克兰| 肺ca是什么意思| 脉数是什么意思| 翻白眼是什么意思| 增强免疫力吃什么维生素| 槟榔是什么味道| 小腹痛男性什么原因| 轻度肠上皮化生是什么意思| 生育证是什么| qa和qc有什么区别| 字母圈是什么| 落枕挂什么科| 抬旗是什么意思| 和解少阳是什么意思| 喝苹果醋有什么好处| 党内警告处分有什么影响| 晚上六点是什么时辰| 大便出血吃什么药好得快| delsey是什么牌子| 湿气重吃什么蔬菜| 丁克是什么意思| 八项规定的内容是什么| 什么样的刘胡兰| 水饮是什么意思| 长豆角叫什么| 一阵什么| 心脏供血不足吃什么药| 发膜什么牌子效果最好| 形同陌路是什么意思| 时乖命蹇是什么意思| 梦见已故的老人是什么意思| 明月对什么| 爱出汗的人是什么原因| 乙肝五项15阳性是什么意思| 月经不干净是什么原因| 丘疹性荨麻疹吃什么药| 肾阳虚有什么症状男性| 胎监是检查什么的| 孕妇胆固醇高对胎儿有什么影响| 减肥吃什么油| siv是什么意思| 玉皇大帝和王母娘娘是什么关系| im医学上是什么意思| 肾是干什么用的| 绝户是什么意思| 天秤座什么性格| 肺部结节灶是什么意思啊| 双鱼座是什么象星座| 朝拜的意思是什么| 跖疣挂什么科| 儿童鸡胸挂什么科| 京东京豆有什么用| 慢性鼻炎吃什么药| 手机壳买什么材质的好| 虚是什么意思| 空调嗡嗡响是什么原因| 胃主什么| 姬松茸和什么煲汤最佳| 保肝护肝吃什么药好| 阴道痒用什么药好| 纳入是什么意思| 什么是处女膜| 阳盛阴衰是什么意思| 什么时候恢复高考| 知乎是干什么的| 30年婚姻叫什么婚| 素金是什么意思| 朱砂有什么用| 什么时候打胎对身体伤害最小| 百度Jump to content

什么是继发性高血压

From Wikipedia, the free encyclopedia
百度 但遗憾的是,近年来的电视荧屏上,小人物的喜怒哀乐似乎越来越少,精英的鸡毛蒜皮反而越来越多。

In mathematics, a partial function f from a set X to a set Y is a function from a subset S of X (possibly the whole X itself) to Y. The subset S, that is, the domain of f viewed as a function, is called the domain of definition or natural domain of f. If S equals X, that is, if f is defined on every element in X, then f is said to be a total function.

In other words, a partial function is a binary relation over two sets that associates to every element of the first set at most one element of the second set; it is thus a univalent relation. This generalizes the concept of a (total) function by not requiring every element of the first set to be associated to an element of the second set.

A partial function is often used when its exact domain of definition is not known, or is difficult to specify. However, even when the exact domain of definition is known, partial functions are often used for simplicity or brevity. This is the case in calculus, where, for example, the quotient of two functions is a partial function whose domain of definition cannot contain the zeros of the denominator; in this context, a partial function is generally simply called a function.

In computability theory, a general recursive function is a partial function from the integers to the integers; no algorithm can exist for deciding whether an arbitrary such function is in fact total.

When arrow notation is used for functions, a partial function from to is sometimes written as or However, there is no general convention, and the latter notation is more commonly used for inclusion maps or embeddings.[citation needed]

Specifically, for a partial function and any one has either:

  • (it is a single element in Y), or
  • is undefined.

For example, if is the square root function restricted to the integers

defined by:
if, and only if,

then is only defined if is a perfect square (that is, ). So but is undefined.

Basic concepts

[edit]
An example of a partial function that is injective.
An example of a function that is not injective.

A partial function arises from the consideration of maps between two sets X and Y that may not be defined on the entire set X. A common example is the square root operation on the real numbers : because negative real numbers do not have real square roots, the operation can be viewed as a partial function from to The domain of definition of a partial function is the subset S of X on which the partial function is defined; in this case, the partial function may also be viewed as a function from S to Y. In the example of the square root operation, the set S consists of the nonnegative real numbers

The notion of partial function is particularly convenient when the exact domain of definition is unknown or even unknowable. For a computer-science example of the latter, see Halting problem.

In case the domain of definition S is equal to the whole set X, the partial function is said to be total. Thus, total partial functions from X to Y coincide with functions from X to Y.

Many properties of functions can be extended in an appropriate sense of partial functions. A partial function is said to be injective, surjective, or bijective when the function given by the restriction of the partial function to its domain of definition is injective, surjective, bijective respectively.

Because a function is trivially surjective when restricted to its image, the term partial bijection denotes a partial function which is injective.[1]

An injective partial function may be inverted to an injective partial function, and a partial function which is both injective and surjective has an injective function as inverse. Furthermore, a function which is injective may be inverted to a bijective partial function.

The notion of transformation can be generalized to partial functions as well. A partial transformation is a function where both and are subsets of some set [1]

Function spaces

[edit]

For convenience, denote the set of all partial functions from a set to a set by This set is the union of the sets of functions defined on subsets of with same codomain :

the latter also written as In finite case, its cardinality is

because any partial function can be extended to a function by any fixed value not contained in so that the codomain is an operation which is injective (unique and invertible by restriction).

Discussion and examples

[edit]

The first diagram at the top of the article represents a partial function that is not a function since the element 1 in the left-hand set is not associated with anything in the right-hand set. Whereas, the second diagram represents a function since every element on the left-hand set is associated with exactly one element in the right hand set.

Natural logarithm

[edit]

Consider the natural logarithm function mapping the real numbers to themselves. The logarithm of a non-positive real is not a real number, so the natural logarithm function doesn't associate any real number in the codomain with any non-positive real number in the domain. Therefore, the natural logarithm function is not a function when viewed as a function from the reals to themselves, but it is a partial function. If the domain is restricted to only include the positive reals (that is, if the natural logarithm function is viewed as a function from the positive reals to the reals), then the natural logarithm is a function.

Subtraction of natural numbers

[edit]

Subtraction of natural numbers (in which is the non-negative integers) is a partial function:

It is defined only when

Bottom element

[edit]

In denotational semantics a partial function is considered as returning the bottom element when it is undefined.

In computer science a partial function corresponds to a subroutine that raises an exception or loops forever. The IEEE floating point standard defines a not-a-number value which is returned when a floating point operation is undefined and exceptions are suppressed, e.g. when the square root of a negative number is requested.

In a programming language where function parameters are statically typed, a function may be defined as a partial function because the language's type system cannot express the exact domain of the function, so the programmer instead gives it the smallest domain which is expressible as a type and contains the domain of definition of the function.

In category theory

[edit]

In category theory, when considering the operation of morphism composition in concrete categories, the composition operation is a total function if and only if has one element. The reason for this is that two morphisms and can only be composed as if that is, the codomain of must equal the domain of

The category of sets and partial functions is equivalent to but not isomorphic with the category of pointed sets and point-preserving maps.[2] One textbook notes that "This formal completion of sets and partial maps by adding “improper,” “infinite” elements was reinvented many times, in particular, in topology (one-point compactification) and in theoretical computer science."[3]

The category of sets and partial bijections is equivalent to its dual.[4] It is the prototypical inverse category.[5]

In abstract algebra

[edit]

Partial algebra generalizes the notion of universal algebra to partial operations. An example would be a field, in which the multiplicative inversion is the only proper partial operation (because division by zero is not defined).[6]

The set of all partial functions (partial transformations) on a given base set, forms a regular semigroup called the semigroup of all partial transformations (or the partial transformation semigroup on ), typically denoted by [7][8][9] The set of all partial bijections on forms the symmetric inverse semigroup.[7][8]

Charts and atlases for manifolds and fiber bundles

[edit]

Charts in the atlases which specify the structure of manifolds and fiber bundles are partial functions. In the case of manifolds, the domain is the point set of the manifold. In the case of fiber bundles, the domain is the space of the fiber bundle. In these applications, the most important construction is the transition map, which is the composite of one chart with the inverse of another. The initial classification of manifolds and fiber bundles is largely expressed in terms of constraints on these transition maps.

The reason for the use of partial functions instead of functions is to permit general global topologies to be represented by stitching together local patches to describe the global structure. The "patches" are the domains where the charts are defined.

See also

[edit]

References

[edit]
  • Martin Davis (1958), Computability and Unsolvability, McGraw–Hill Book Company, Inc, New York. Republished by Dover in 1982. ISBN 0-486-61471-9.
  • Stephen Kleene (1952), Introduction to Meta-Mathematics, North-Holland Publishing Company, Amsterdam, Netherlands, 10th printing with corrections added on 7th printing (1974). ISBN 0-7204-2103-9.
  • Harold S. Stone (1972), Introduction to Computer Organization and Data Structures, McGraw–Hill Book Company, New York.

Notes

[edit]
  1. ^ a b Christopher Hollings (2014). Mathematics across the Iron Curtain: A History of the Algebraic Theory of Semigroups. American Mathematical Society. p. 251. ISBN 978-1-4704-1493-1.
  2. ^ Lutz Schr?der (2001). "Categories: a free tour". In Jürgen Koslowski and Austin Melton (ed.). Categorical Perspectives. Springer Science & Business Media. p. 10. ISBN 978-0-8176-4186-3.
  3. ^ Neal Koblitz; B. Zilber; Yu. I. Manin (2009). A Course in Mathematical Logic for Mathematicians. Springer Science & Business Media. p. 290. ISBN 978-1-4419-0615-1.
  4. ^ Francis Borceux (1994). Handbook of Categorical Algebra: Volume 2, Categories and Structures. Cambridge University Press. p. 289. ISBN 978-0-521-44179-7.
  5. ^ Marco Grandis (2012). Homological Algebra: The Interplay of Homology with Distributive Lattices and Orthodox Semigroups. World Scientific. p. 55. ISBN 978-981-4407-06-9.
  6. ^ Peter Burmeister (1993). "Partial algebras – an introductory survey". In Ivo G. Rosenberg; Gert Sabidussi (eds.). Algebras and Orders. Springer Science & Business Media. ISBN 978-0-7923-2143-9.
  7. ^ a b Alfred Hoblitzelle Clifford; G. B. Preston (1967). The Algebraic Theory of Semigroups. Volume II. American Mathematical Soc. p. xii. ISBN 978-0-8218-0272-4.
  8. ^ a b Peter M. Higgins (1992). Techniques of semigroup theory. Oxford University Press, Incorporated. p. 4. ISBN 978-0-19-853577-5.
  9. ^ Olexandr Ganyushkin; Volodymyr Mazorchuk (2008). Classical Finite Transformation Semigroups: An Introduction. Springer Science & Business Media. pp. 16 and 24. ISBN 978-1-84800-281-4.
立冬和冬至什么区别 孕检挂什么科 室内机漏水是什么原因 一声什么 两小儿辩日告诉我们什么道理
脑浆是什么颜色 茹是什么意思 霸王别姬是什么生肖 香菜什么时候种植最好 braun是什么品牌
宝宝拉肚子挂什么科 大姨妈提前是什么原因 pd是什么元素 l是什么字 什么养胃
紫癜有什么危害 胃痛吃什么药 血沉高说明什么 甲钴胺片有什么副作用 月字旁的有什么字
怀孕一个月有什么症状hcv8jop9ns8r.cn 不能生育的女人有什么特征hcv7jop9ns5r.cn 左行气右行血什么意思hcv8jop1ns7r.cn 月经2个月没来是什么原因hcv9jop3ns8r.cn 别出心裁什么意思hcv8jop6ns7r.cn
女生痛经有什么办法缓解hcv7jop5ns2r.cn 红酒是什么味道hcv9jop6ns0r.cn 怀孕什么水果不能吃hcv8jop9ns1r.cn 女人脾肾两虚吃什么好zsyouku.com 咳嗽有痰吃什么药好得最快最有效hcv9jop7ns4r.cn
白羊座的幸运色是什么hcv8jop5ns2r.cn 红色药片一般是什么药hcv8jop1ns8r.cn 为什么咳嗽yanzhenzixun.com 宜夫痣是什么意思hcv9jop0ns9r.cn 找工作上什么网liaochangning.com
幽闭是什么意思hcv9jop3ns1r.cn 高危妊娠监督什么意思hcv9jop3ns1r.cn 日本为什么经常地震gangsutong.com 肝做什么检查最准确hcv9jop3ns3r.cn 冯巩什么军衔hcv9jop1ns1r.cn
百度