肺炎支原体感染吃什么药| 鬼长什么样子| 尿里带血是什么原因女性| 吊儿郎当是什么意思| 趋光性是什么意思| 眼视光医学是干什么的| 为什么硬起来有点疼| 姜子牙属什么生肖| 少年白头发是什么原因| 嘴唇暗紫色是什么原因| 鸡的祖先是什么动物| 拍拖什么意思| 肾动脉狭窄有什么症状| 什么是应激反应| 老年人喝什么牛奶好| 不言而喻的喻是什么意思| 眉茶属于什么茶| 大葱和小葱有什么区别| 大众什么车最贵| 形婚是什么意思啊| 乙型肝炎表面抗体高是什么意思| 谨记是什么意思| 桃花什么生肖| 检查膝盖挂什么科| 11.7号是什么星座| 7d是什么意思| 梦到甘蔗代表什么预兆| 白带黄绿是什么原因| 颈椎生理曲度变直是什么意思| 鬼见愁是什么意思| 互卦是什么意思| 做扩胸运动有什么好处| 钠偏低是什么原因| 司法鉴定是干什么的| 为什么会突然长智齿| iwc是什么牌子手表| 满江红是什么植物| 小肝癌是什么意思| 心率90左右意味着什么| 什么中药可以减肥| 借记卡是什么卡| 9.20号是什么星座| 煮牛肉放什么容易烂| 芝麻吃多了有什么坏处| 大好河山是什么生肖| 大腿内侧是什么经络| 118代表什么意思| 孩子不愿意吃饭是什么原因| 乙肝是什么病严重吗| 什么人容易得尿毒症| 火加同念什么| 大黄和芒硝混合外敷有什么作用| 王字加一笔是什么字| 心跳过快是什么原因| 早搏是什么原因引起的| moose是什么意思| 晚上十二点是什么时辰| 地黄长什么样| 请示是什么意思| 风湿性关节炎用什么药效果好| 站姐是什么职业| 什么叫正盐| 风声鹤唳是什么意思| 生吃洋葱有什么好处| loa是什么胎位| 左氧氟沙星的功效是什么| 哭得什么| 指甲有横纹是什么原因| 边缘视力是什么意思| 月经不来挂什么科| 狮子座跟什么星座最配| 瓜子脸适合什么发型| 过的第五笔是什么| 肺部阴影意味着什么| 腹泻肚子疼吃什么药| ua是什么| 小壁虎进家有什么预兆| 电气石是什么东西| 便秘吃什么最快排便小孩| 同型半胱氨酸高吃什么| 你为什么不快乐| 脸上长肉疙瘩是什么原因| lga是什么意思| 没有高中毕业证有什么影响| 为什么一来月经就拉肚子| 家里为什么会有蟑螂| 拿什么让你幸福| 今年7岁属什么生肖| 电脑什么时候发明的| 中耳炎吃什么药最有效| 肠胃炎可以吃什么| 区教育局局长是什么级别| 湿热便秘吃什么中成药| 陪伴是最长情的告白下一句是什么| 经期血块多是什么原因| 免疫抑制剂是什么意思| 茶叶含有什么成分| 血沉高是什么意思| 面粉是什么做的| 强字五行属什么| 智能手环是干什么用的| 剖腹产后可以吃什么| 紫荆花代表什么生肖| 穿山甲是什么动物| ivy什么意思| 一个立一个羽读什么| 记忆力减退吃什么药效果好| 梦见蛇和鱼是什么意思周公解梦| 86岁属什么生肖| 属马的跟什么属相最配| 三高可以吃什么水果| 装可以组什么词| 信访局是干什么的| 手突然抽搐是什么原因| 右脚麻是什么病的前兆| 吃生姜有什么好处| 天壤之别是什么意思| 尿酸高吃什么能降| 利尿是什么意思| 世袭罔替是什么意思| 万马奔腾是什么意思| 开什么节什么的成语| 纤维瘤是什么| 诏安是什么意思| 肝火大吃什么药| 嘴唇起白皮是什么原因| 哺乳期吃辣椒对宝宝有什么影响| 世界上最深的湖是什么| 非营利性医院是什么意思| 肌腱是什么| 什么叫水印| 妮是什么意思| 牛黄清心丸适合什么人群吃| 胆固醇高不能吃什么食物| 梦到蜘蛛是什么意思| 什么是脊柱侧弯| 膝盖酸是什么原因| 曲马多是什么药| 静养是什么意思| 荷叶茶有什么作用| 吃什么东西会长胖| 穿什么衣服| 呼吸不顺畅是什么原因| 肚子胀气吃什么食物| 什么叫血沉| 吕布的武器是什么| 西瓜有什么品种| 白细胞低有什么危害| 病态是什么意思| 素手是什么意思| 内痔是什么意思| 淋巴是什么引起的| 熹是什么意思| 指甲有凹陷是什么原因| 角是什么结构| 母亲节说什么| 卡号是什么| 社保缴费基数和工资有什么关系| 轩字属于五行属什么| 藏红花可以搭配什么泡水喝| dq什么意思| 鼻窦炎有什么特效药| 提辖相当于现在什么官| 吸烟有什么好处| 4月12号是什么星座| 肠易激综合征吃什么中成药| 拔牙可以吃什么| 首鼠两端是什么意思| 楚乔传2什么时候上映| 硬伤是什么意思| kenzo属于什么档次| 安阳车牌号是豫什么| 嗳气什么意思| 足字旁的字跟什么有关| 舌苔发黑是什么病| 异类是什么意思| 运动员心率为什么慢| ems是什么| 鬼冢虎为什么很少人穿| 低回声结节什么意思| 普洱在云南什么位置| 碧血是什么意思| 28岁属什么生肖| 脚肿什么病| 各就各位是什么意思| 什么快递便宜| 三什么什么什么成语| 钙化积分是什么意思| 什么是支气管扩张| 为什么一年比一年热| 葡萄糖是什么糖| 牙龈疼吃什么消炎药| 什么的东风填词语| 男怕初一女怕十五是什么意思| 眼睛模糊吃什么药| 脑浆是什么颜色| 为什么香蕉不能放冰箱| 控评是什么意思| 蓝莓是什么味道| 12点是什么时辰| 失落感是什么意思| 形同陌路是什么意思| 1989年是什么蛇| 荔枝不能与什么一起吃| 1932年属什么生肖| 霉菌阳性是什么意思| gl是什么| 世界上最多笔画的字是什么字| 芼什么意思| 汽车抖动是什么原因| 人授和试管有什么区别| 祚是什么意思| 因加一笔是什么字| 金牛男喜欢什么类型的女生| 小s和黄子佼为什么分手| 培根是什么肉做的| 贻笑大方什么意思| 唐筛和无创有什么区别| 熊掌有什么功效与作用| angelababy是什么意思| 值机是什么意思| 脂肪肝应注意什么| 人造奶油是什么做的| 公务员属于什么行业| 大道无为是什么意思| 阴蒂瘙痒是什么原因| 早期教育是什么| 紫玫瑰花语是什么意思| 恶心反胃想吐吃什么药| 三点水的字和什么有关| 堆肥是什么意思| 最贵的烟是什么| 尿的颜色有点红褐色是什么原因| 吊龙是什么| 布洛芬有什么作用| 奶茶妹是什么意思| 肝火是什么原因引起的| 蜈蚣吃什么| 三点水加四读什么| 血hcg是什么意思| 承字属于五行属什么| 梦见小麦粒是什么意思| 秃鹫是什么动物| 梦见火是什么意思| 脂肪肝喝什么茶最好最有效| 47岁属什么| 手指指尖发麻是什么原因| 阿尔卑斯是什么意思| 掷是什么意思| 花木兰属什么生肖| 血管瘤挂什么科比较好| 胃疼恶心吃什么药效果好| 食禄是什么意思| 舐犊是什么意思| 适合什么发型| 女人做春梦预示着什么| cold什么意思| 鹦鹉能吃什么水果| 牙龈上火肿痛吃什么药| 生是什么结构的字| 36d是什么意思| 白头翁是什么生肖| 贵字五行属什么| 司马懿字什么| 百度Jump to content

外阴病变有什么症状

From Wikipedia, the free encyclopedia
百度   文明祭扫是当下最大的倡导,也是最大的共识,但从思想认识落实到行动,还有很长一段路要走。

In mathematics, Robinson arithmetic is a finitely axiomatized fragment of first-order Peano arithmetic (PA), first set out by Raphael M. Robinson in 1950.[1] It is usually denoted Q.

Q is PA without the axiom schema of mathematical induction. Q is weaker than PA but it has the same language, and both theories are incomplete. Q is important and interesting because it is a finitely axiomatized fragment of PA that is recursively incompletable and essentially undecidable.

Axioms

[edit]

The background logic of Q is first-order logic with identity, denoted by infix '='. The individuals, called natural numbers, are members of a set called N with a distinguished member 0, called zero. There are three operations over N:

The following axioms for Q are Q1–Q7 in Burgess (2005, p. 42) (cf. also the axioms of first-order arithmetic). Variables not bound by an existential quantifier are bound by an implicit universal quantifier.

  1. Sx0
    • 0 is not the successor of any number.
  2. (Sx = Sy) → x = y
    • If the successor of x is identical to the successor of y, then x and y are identical. (1) and (2) yield the minimum of facts about N (it is an infinite set bounded by 0) and S (it is an injective function whose domain is N) needed for non-triviality. The converse of (2) follows from the properties of identity.
  3. y=0 ∨ ?x (Sx = y)
    • Every number is either 0 or the successor of some number. The axiom schema of mathematical induction present in arithmetics stronger than Q turns this axiom into a theorem.
  4. x + 0 = x
  5. x + Sy = S(x + y)
  6. x·0 = 0
  7. x·Sy = (x·y) + x

Variant axiomatizations

[edit]

The axioms in Robinson (1950) are (1)–(13) in Mendelson (2015, pp. 202–203). The first 6 of Robinson's 13 axioms are required only when, unlike here, the background logic does not include identity.

The usual strict total order on N, "less than" (denoted by "<"), can be defined in terms of addition via the rule x < y ? ?z (Sz + x = y). Equivalently, we get a definitional conservative extension of Q by taking "<" as primitive and adding this rule as an eighth axiom; this system is termed "Robinson arithmetic R" in Boolos, Burgess & Jeffrey (2002, Sec 16.4).

A different extension of Q, which we temporarily call Q+, is obtained if we take "<" as primitive and add (instead of the last definitional axiom) the following three axioms to axioms (1)–(7) of Q:

  • ?(x < 0)
  • x < Sy ? (x < yx = y)
  • x < yx = yy < x

Q+ is still a conservative extension of Q, in the sense that any formula provable in Q+ not containing the symbol "<" is already provable in Q. (Adding only the first two of the above three axioms to Q gives a conservative extension of Q that is equivalent to what Burgess (2005, p. 56) calls Q*. See also Burgess (2005, p. 230, fn. 24), but note that the second of the above three axioms cannot be deduced from "the pure definitional extension" of Q obtained by adding only the axiom x < y ? ?z (Sz + x = y).)

Among the axioms (1)–(7) of Q, axiom (3) needs an inner existential quantifier. Shoenfield (1967, p. 22) gives an axiomatization that has only (implicit) outer universal quantifiers, by dispensing with axiom (3) of Q but adding the above three axioms with < as primitive. That is, Shoenfield's system is Q+ minus axiom (3), and is strictly weaker than Q+, since axiom (3) is independent of the other axioms (for example, the ordinals less than forms a model for all axioms except (3) when Sv is interpreted as v + 1). Shoenfield's system also appears in Boolos, Burgess & Jeffrey (2002, Sec 16.2), where it is called the "minimal arithmetic" (also denoted by Q). A closely related axiomatization, that uses "≤" instead of "<", may be found in Machover (1996, pp. 256–257).

Metamathematics

[edit]

On the metamathematics of Q see Boolos, Burgess & Jeffrey (2002, chpt. 16), Tarski, Mostowski & Robinson (1953), Smullyan (1991), Mendelson (2015, pp. 202–203) and Burgess (2005, §§1.5a, 2.2). The intended interpretation of Q is the natural numbers and their usual arithmetic in which addition and multiplication have their customary meaning, identity is equality, Sx = x + 1, and 0 is the natural number zero.

Any model (structure) that satisfies all axioms of Q except possibly axiom (3) has a unique submodel ("the standard part") isomorphic to the standard natural numbers (N, +, ·, S, 0). (Axiom (3) need not be satisfied; for example the polynomials with non-negative integer coefficients forms a model that satisfies all axioms except (3).)

Q, like Peano arithmetic, has nonstandard models of all infinite cardinalities. However, unlike Peano arithmetic, Tennenbaum's theorem does not apply to Q, and it has computable non-standard models. For instance, there is a computable model of Q consisting of integer-coefficient polynomials with positive leading coefficient, plus the zero polynomial, with their usual arithmetic.

A notable characteristic of Q is the absence of the axiom scheme of induction. Hence it is often possible to prove in Q every specific instance of a fact about the natural numbers, but not the associated general theorem. For example, 5 + 7 = 7 + 5 is provable in Q, but the general statement x + y = y + x is not. Similarly, one cannot prove that Sxx. [2] A model of Q that fails many of the standard facts is obtained by adjoining two distinct new elements a and b to the standard model of natural numbers and defining Sa = a, Sb = b, x + a = b and x + b = a for all x, a + n = a and b + n = b if n is a standard natural number, x·0 = 0 for all x, a·n = b and b·n = a if n is a non-zero standard natural number, x·a = a for all x except x = a, x·b = b for all x except x = b, a·a = b, and b·b = a.[3]

Q is interpretable in a fragment of Zermelo's axiomatic set theory, consisting of extensionality, existence of the empty set, and the axiom of adjunction. This theory is S' in Tarski, Mostowski & Robinson (1953, p. 34) and ST in Burgess (2005, pp. 90–91, 223). See general set theory for more details.

Q is a finitely axiomatized first-order theory that is considerably weaker than Peano arithmetic (PA), and whose axioms contain only one existential quantifier. Yet like PA it is incomplete and incompletable in the sense of G?del's incompleteness theorems, and essentially undecidable. Robinson (1950) derived the Q axioms (1)–(7) above by noting just what PA axioms are required [4] to prove that every computable function is representable in PA.[5] The only use this proof makes of the PA axiom schema of induction is to prove a statement that is axiom (3) above, and so, all computable functions are representable in Q.[6][7][8] The conclusion of G?del's second incompleteness theorem also holds for Q: no consistent recursively axiomatized extension of Q can prove its own consistency, even if we additionally restrict G?del numbers of proofs to a definable cut.[9][10][11]

The first incompleteness theorem applies only to axiomatic systems defining sufficient arithmetic to carry out the necessary coding constructions (of which G?del numbering forms a part). The axioms of Q were chosen specifically to ensure they are strong enough for this purpose. Thus the usual proof of the first incompleteness theorem can be used to show that Q is incomplete and undecidable. This indicates that the incompleteness and undecidability of PA cannot be blamed on the only aspect of PA differentiating it from Q, namely the axiom schema of induction.

G?del's theorems do not hold when any one of the seven axioms above is dropped. These fragments of Q remain undecidable, but they are no longer essentially undecidable: they have consistent decidable extensions, as well as uninteresting models (i.e., models that are not end-extensions of the standard natural numbers).[citation needed]

See also

[edit]

References

[edit]
  1. ^ Robinson 1950.
  2. ^ Burgess 2005, p. 56.
  3. ^ Boolos, Burgess & Jeffrey 2002, Sec 16.4.
  4. ^ Mendelson 2015, p. 188, Proposition 3.24.
  5. ^ A function is said to be representable in if there is a formula such that for all
  6. ^ Odifreddi 1989.
  7. ^ Mendelson 2015, p. 203, Proposition 3.33.
  8. ^ Rautenberg 2010, p. 246.
  9. ^ Bezboruah & Shepherdson 1976.
  10. ^ Pudlák 1985.
  11. ^ Hájek & Pudlák 1993, p. 387.

Bibliography

[edit]
  • Bezboruah, A.; Shepherdson, John C. (June 1976). "G?del's Second Incompleteness Theorem for Q". Journal of Symbolic Logic. 41 (2): 503–512. doi:10.2307/2272251. JSTOR 2272251.
  • Boolos, George; Burgess, John P.; Jeffrey, Richard (2002). Computability and Logic (4th ed.). Cambridge University Press. ISBN 0-521-00758-5.
  • Burgess, John P. (July 2005). Fixing Frege. Princeton University Press. ISBN 978-0691122311.
  • Hájek, Petr; Pudlák, Pavel (1993). Metamathematics of first-order arithmetic (2nd ed.). Springer-Verlag.
  • Jones, James P.; Shepherdson, John C. (1983). "Variants of Robinson's essentially undecidable theoryR". Archiv für mathematische Logik und Grundlagenforschung. 23: 61–64. doi:10.1007/BF02023013. S2CID 2659126.
  • Lucas, John R. Conceptual Roots of Mathematics. Routledge.
  • Machover, Moshé (1996). Set Theory, Logic, and Their Limitation. Cambridge University Press.
  • Mendelson, Elliott (2015). Introduction to Mathematical Logic (6th ed.). Chapman & Hall. ISBN 9781482237726.
  • Odifreddi, Piergiorgio (1989). Classical recursion theory, Vol. 1 (The Theory of Functions and Sets of Natural Numbers). Studies in Logic and the Foundations of Mathematics. Vol. 125. North-Holland. ISBN 9780444894830.
  • Pudlák, Pavel (June 1985). "Cuts, consistency statements and interpretations". Journal of Symbolic Logic. 50 (2): 423–441. doi:10.2307/2274231. JSTOR 2274231. S2CID 30289163.
  • Rautenberg, Wolfgang (2010). A Concise Introduction to Mathematical Logic (3rd ed.). New York: Springer Science+Business Media. doi:10.1007/978-1-4419-1221-3. ISBN 978-1-4419-1220-6..
  • Robinson, Raphael M. (1950). "An Essentially Undecidable Axiom System". Proceedings of the International Congress of Mathematics: 729–730.
  • Shoenfield, Joseph R. (1967). Mathematical logic. Addison Wesley. (Reprinted by Association for Symbolic Logic and A K Peters in 2000).
  • Smullyan, Raymond (1991). G?del's Incompleteness Theorems. Oxford University Press.
  • Tarski, Alfred; Mostowski, Andrzej; Robinson, Raphael M. (1953). Undecidable theories. North Holland.
  • Vaught, Robert L. (1966). "On a Theorem of Cobham Concerning Undecidable Theories". Studies in Logic and the Foundations of Mathematics. 44: 14–25. doi:10.1016/S0049-237X(09)70566-X. ISBN 9780804700962.
加湿器有什么作用 一路繁花的意思是什么 翔是什么意思 眼睑浮肿是什么原因 什么的睡觉
梦见很多蜘蛛是什么意思 黄芪泡水喝有什么好处 双氧水是什么东西 干细胞有什么作用 活检是什么意思
皮肤擦伤用什么药最好 迎春花什么时候开花 胃不好吃什么蔬菜 白带发黄吃什么药 凌晨的凌是什么意思
机关单位和事业单位有什么区别 尿常规3个加号什么意思 二尖瓣反流什么意思 2 26是什么意思 全血低切相对指数偏高什么意思
塞屁股的退烧药叫什么hcv8jop2ns3r.cn 地素女装属于什么档次hcv9jop3ns9r.cn 1977年出生属什么生肖hcv9jop1ns5r.cn 牙齿发炎吃什么药hcv7jop6ns5r.cn 小孩流口水是什么原因hcv7jop9ns5r.cn
眩晕吃什么药好hcv7jop6ns0r.cn 看脖子挂什么科hcv7jop9ns4r.cn 新生儿满月打什么疫苗hcv9jop3ns1r.cn 梦见打碎碗是什么预兆hcv8jop5ns9r.cn 女生自慰什么感觉naasee.com
飞蚊症用什么药物治疗最好hcv8jop4ns9r.cn 四点底和什么有关hcv9jop5ns2r.cn 奶奶的姐姐叫什么hanqikai.com al是什么意思hcv7jop4ns7r.cn 养老金什么时候可以领取xinmaowt.com
insun是什么牌子hcv8jop7ns2r.cn 白菜属于什么科hcv9jop7ns4r.cn 为什么白天尿少晚上尿多hcv8jop4ns6r.cn 9月3号是什么日子hcv9jop2ns9r.cn 卫戍部队是什么意思hcv8jop5ns8r.cn
百度