睡觉腰疼是什么原因| 山水不相逢什么意思| 血清载脂蛋白b偏高是什么意思| 青字五行属什么| 托梦是什么意思| txt什么意思| 人为什么会过敏| 罄竹难书什么意思| 虾和什么蔬菜搭配最好| 妙赞是什么意思| 鼠妇是什么| 结婚28年是什么婚| 你为什么不快乐| 什么手机拍照效果最好| 橱窗是什么意思| 普瑞巴林胶囊治什么病| 女人吃什么排卵最快| 红细胞低吃什么补得快| 猫是什么生肖| 抗核抗体阳性对怀孕有什么影响| 董五行属什么| model是什么意思| hgb是什么意思| 大姨妈不来是什么原因造成的| 什么情况下会流前列腺液| 眼干是什么原因引起的| 莱猪是什么| 直肠炎是什么症状| 四月二十一是什么星座| 睡眠不好吃什么中成药| 钾在人体中起什么作用| 火乐念什么| 感冒虚弱吃什么食物好| 为什么会得干眼症| 什么东西补铁效果好而且最快| 脱肛是什么原因造成的| 鸡血藤手镯有什么功效| 为什么会偏头痛| 沉香有什么作用与功效| 负离子什么意思| 现在干什么挣钱| 俎是什么意思| 梦到吃饭是什么意思| 三月二十八号是什么星座| 胃酸胃胀吃什么药| 什么含维生素d| 一叶一菩提一花一世界什么意思| 小苏打是什么成分| 武松打的是什么虎| 伏羲姓什么| 输卵管堵塞有什么样症状| 小孩咬手指甲是什么原因| 冬虫夏草生长在什么地方| 无所不用其极什么意思| 自律性是什么意思| 日什么月什么| 胃寒吃点什么药| 舒张压偏低是什么原因| viagra是什么药| 蜜蜂为什么会蜇人| 苏打水有什么作用和功效| 财大气粗是什么意思| 过期茶叶有什么用途| 一切就绪是什么意思| 眼屎多用什么眼药水| 便秘吃什么最快排便| 榴莲什么时候吃最好| 王加玉念什么| 毛拉是什么意思| 什么水果不含糖| 光是什么生肖| 宰相肚里能撑船是什么意思| 豆绿色是什么颜色| 衣服38码相当于什么码| 明天什么考试| 泰迪哼哼唧唧表示什么| 大校军衔是什么级别| 紫绀是什么症状| 红细胞体积偏高是什么意思| 老是掉头发什么原因| 蜂蜜吃有什么好处| 甲亢挂什么科| 八月六号是什么星座| 双环征是什么意思| 铁蛋白偏低是什么意思| 腋毛什么时候开始生长| 湿疹为什么一热就出来| 牛油果不能和什么一起吃| laura是什么意思| 科甲是什么意思| 天是什么结构的字| 莘莘学子什么意思| 脸上长粉刺是什么原因引起的| 什么是处男| 感冒咳嗽可以吃什么水果| 白细胞偏低吃什么药| 纳尼是什么意思| 大专什么专业就业前景好| 照影是什么意思| 贫血喝什么口服液| 囊腺瘤是什么| 掐是什么意思| 火龙果是什么季节的水果| 乌冬面是什么面| 频繁感冒是什么原因| 无花果叶子有什么功效| kerry英文名什么意思| 吐血是什么原因引起的| hpy什么意思| 中性粒细胞百分比偏低是什么意思| 母亲节做什么| 蟒袍是什么人穿的| 69什么意思| 8月3号是什么星座| 阴柔是什么意思| 天理是什么意思| 驳什么意思| 摩羯前面是什么星座| 怀孕期间不能吃什么| pedro是什么牌子| 遗精吃什么药最好| 嗓子发炎挂什么科| 朝鲜钱币叫什么| 咳嗽不能吃什么| 双肺纹理增重是什么意思| 男人吃香菜有什么好处| 月蚀是什么意思| 肛门痛是什么原因| 小孩牙龈黑紫色是什么原因| 办理港澳通行证需要什么证件| 福报是什么意思| 什么的云| 弯弯的彩虹像什么| 什么叫空调病| 12306什么时候放票| 腱鞘炎吃什么药| 咖位是什么意思| 梦见屎是什么意思| 纸可以做什么| 男人做什么运动能提高性功能| 皮肤黑穿什么颜色| 被螨虫咬了非常痒用什么药膏好| 头晕冒冷汗是什么原因| 口腔上火吃什么药| 厥逆是什么意思| 肠胃炎吃什么药| 冶游史是什么意思| 青柠檬和黄柠檬有什么区别| 辩证思维是什么意思| 瑗字五行属什么| 隔离霜和防晒霜有什么区别| 脸肿是什么原因| 子不教父之过是什么意思| 鼻子大说明什么| 肝什么相照| 解酒喝什么好| 鸡胗是什么部位| 平安顺遂什么意思| 磁共振是做什么的| rbc红细胞偏高是什么意思| 嘴苦口臭是什么原因造成的| 喜面是什么意思| 炸了是什么意思| 痉挛什么意思| 生米煮成熟饭是什么意思| 再生牙技术什么时候能实现| 2月8号什么星座| 两个虎是什么字| 1982年属什么| 什么是碳水食物有哪些| 参透是什么意思| 冲服是什么意思| 树膏皮是什么皮| 早晨8点是什么时辰| 修女是什么意思| 夜间睡觉流口水是什么原因| 经常头晕吃什么食物好| 人乳头瘤病毒39型阳性是什么意思| 什么能减肚子上的脂肪| 梦到别人怀孕了是什么意思| 胃溃疡能吃什么水果| 竖心旁的字与什么有关| 一什么金光| 仪仗队是什么意思| 喉咙有痰吐出来有血是什么原因| 生化流产是什么原因造成的| 外阴瘙痒用什么洗液| 吞服是什么意思| 眉什么眼什么| 册封是什么意思| 看幽门螺旋杆菌挂什么科| 剖腹产第四天可以吃什么| 什么是过敏性紫癜| 后背疼痛挂什么科| 医院介入科是干什么的| 肺火吃什么中成药| 什么私语| 人生观价值观世界观是什么意思| style什么意思| tap什么意思| 受虐倾向是什么| 丁是什么生肖| 苯磺酸氨氯地平片什么时候吃| 先兆性流产有什么症状| 莱猪是什么| 声优是什么意思| 梅雨季节什么时候结束| 市委副秘书长什么级别| 大洋马是什么意思| neighborhood什么意思| 酸菜鱼用什么鱼| 10.21是什么星座| 梦见包丢了是什么意思| 屁眼火辣辣的疼是什么原因| 什么花适合室内养| 心血管堵塞吃什么药| 一什么篮子| hankook是什么轮胎| 胃肠感冒什么症状| 头疼吃什么| 尿毒症的尿是什么颜色| 烤箱能做什么美食| 查激素挂什么科| 腿酸是什么原因| 粟米是什么米| 2 26是什么意思| 左卵巢囊性结构是什么意思| thr是什么氨基酸| 杞人忧天是什么故事| 铺天盖地的意思是什么| 济公是什么生肖| 74年属什么的生肖| 脊柱侧弯是什么原因引起的| 甲醛什么味| 舌头白色是什么原因| 奕字属于五行属什么| 6月13号是什么星座| 嗅觉失灵是什么原因| 蛇与什么属相相克相冲| 大学校长什么级别| 美国为什么有哥伦比亚| 牛油果坏了是什么样| 盎司是什么单位| 鸡胸肉炒什么菜好吃| 隐士是什么意思| 什么前什么后| 什么有助于睡眠| 胆汁酸高吃什么药| 脚底褪皮是什么原因| 天蝎男和什么星座最配| 胎儿头偏大是什么原因| 梦见被蛇追着咬是什么意思| 三点水一个分读什么| 前列腺增生用什么药好| 胡萝卜富含什么维生素| 92年出生属什么生肖| omega什么意思| 九五年属什么生肖| 核素是什么| 马可以加什么偏旁| 一什么手表| 天蝎座和什么星座不合| 胎位roa是什么意思| 流年不利什么意思| 百度Jump to content

"我不感谢妈妈!"6岁男孩写诗结尾转折让人泪目

From Wikipedia, the free encyclopedia
百度   目前,女孩的父母已经赶至抢救医院,根本无法接受爱女离世的惨痛,悲痛欲绝。

In computing, quadruple precision (or quad precision) is a binary floating-point–based computer number format that occupies 16 bytes (128 bits) with precision at least twice the 53-bit double precision.

This 128-bit quadruple precision is designed for applications needing results in higher than double precision,[1] and as a primary function, to allow computing double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables. William Kahan, primary architect of the original IEEE 754 floating-point standard noted, "For now the 10-byte Extended format is a tolerable compromise between the value of extra-precise arithmetic and the price of implementing it to run fast; very soon two more bytes of precision will become tolerable, and ultimately a 16-byte format ... That kind of gradual evolution towards wider precision was already in view when IEEE Standard 754 for Floating-Point Arithmetic was framed."[2]

In IEEE 754-2008 the 128-bit base-2 format is officially referred to as binary128.

IEEE 754 quadruple-precision binary floating-point format: binary128

[edit]

The IEEE 754 standard specifies a binary128 as having:

The sign bit determines the sign of the number (including when this number is zero, which is signed). "1" stands for negative.

This gives from 33 to 36 significant decimal digits precision. If a decimal string with at most 33 significant digits is converted to the IEEE 754 quadruple-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string. If an IEEE 754 quadruple-precision number is converted to a decimal string with at least 36 significant digits, and then converted back to quadruple-precision representation, the final result must match the original number.[3]

The format is written with an implicit lead bit with value 1 unless the exponent is stored with all zeros (used to encode subnormal numbers and zeros). Thus only 112 bits of the significand appear in the memory format, but the total precision is 113 bits (approximately 34 decimal digits: log10(2113) ≈ 34.016) for normal values; subnormals have gracefully degrading precision down to 1 bit for the smallest non-zero value. The bits are laid out as:

A sign bit, a 15-bit exponent, and a 112-bit significand

Exponent encoding

[edit]

The quadruple-precision binary floating-point exponent is encoded using an offset binary representation, with the zero offset being 16383; this is also known as exponent bias in the IEEE 754 standard.

  • Emin = 000116 ? 3FFF16 = ?16382
  • Emax = 7FFE16 ? 3FFF16 = 16383
  • Exponent bias = 3FFF16 = 16383

Thus, as defined by the offset binary representation, in order to get the true exponent, the offset of 16383 has to be subtracted from the stored exponent.

The stored exponents 000016 and 7FFF16 are interpreted specially.

Exponent Significand zero Significand non-zero Equation
000016 0, ?0 subnormal numbers (?1)signbit × 2?16382 × 0.significandbits2
000116, ..., 7FFE16 normalized value (?1)signbit × 2exponentbits2 ? 16383 × 1.significandbits2
7FFF16 ± NaN (quiet, signaling)

The minimum strictly positive (subnormal) value is 2?16494 ≈ 10?4965 and has a precision of only one bit. The minimum positive normal value is 2?163823.3621 × 10?4932 and has a precision of 113 bits, i.e. ±2?16494 as well. The maximum representable value is 216384 ? 2162711.1897 × 104932.

Quadruple precision examples

[edit]

These examples are given in bit representation, in hexadecimal, of the floating-point value. This includes the sign, (biased) exponent, and significand.

0000 0000 0000 0000 0000 0000 0000 000116 = 2?16382 × 2?112 = 2?16494
                                          ≈ 6.4751751194380251109244389582276465525 × 10?4966
                                          (smallest positive subnormal number)

0000 ffff ffff ffff ffff ffff ffff ffff16 = 2?16382 × (1 ? 2?112)
                                          ≈ 3.3621031431120935062626778173217519551 × 10?4932
                                          (largest subnormal number)

0001 0000 0000 0000 0000 0000 0000 000016 = 2?16382
                                          ≈ 3.3621031431120935062626778173217526026 × 10?4932
                                          (smallest positive normal number)

7ffe ffff ffff ffff ffff ffff ffff ffff16 = 216383 × (2 ? 2?112)
                                          ≈ 1.1897314953572317650857593266280070162 × 104932
                                          (largest normal number)

3ffe ffff ffff ffff ffff ffff ffff ffff16 = 1 ? 2?113
                                          ≈ 0.9999999999999999999999999999999999037
                                          (largest number less than one)

3fff 0000 0000 0000 0000 0000 0000 000016 = 1 (one)

3fff 0000 0000 0000 0000 0000 0000 000116 = 1 + 2?112
                                          ≈ 1.0000000000000000000000000000000001926
                                          (smallest number larger than one)

4000 0000 0000 0000 0000 0000 0000 000016 = 2
c000 0000 0000 0000 0000 0000 0000 000016 = ?2

0000 0000 0000 0000 0000 0000 0000 000016 = 0
8000 0000 0000 0000 0000 0000 0000 000016 = ?0

7fff 0000 0000 0000 0000 0000 0000 000016 = infinity
ffff 0000 0000 0000 0000 0000 0000 000016 = ?infinity

4000 921f b544 42d1 8469 898c c517 01b816 ≈ 3.1415926535897932384626433832795027975
                                          (closest approximation to π)

3ffd 5555 5555 5555 5555 5555 5555 555516 ≈ 0.3333333333333333333333333333333333173
                                          (closest approximation to 1/3)

4008 74d9 9564 5aa0 0c11 d0cc 9770 5e5b16 ≈ 745.69987158227021999999999999999997147
                                          (closest approximation to the number of
                                          Watts corresponding to 1 horsepower)

By default, 1/3 rounds down like double precision, because of the odd number of bits in the significand. Thus, the bits beyond the rounding point are 0101... which is less than 1/2 of a unit in the last place.

Double-double arithmetic

[edit]

A common software technique to implement nearly quadruple precision using pairs of double-precision values is sometimes called double-double arithmetic.[4][5][6] Using pairs of IEEE double-precision values with 53-bit significands, double-double arithmetic provides operations on numbers with significands of at least[4] 2 × 53 = 106 bits (actually 107 bits[7] except for some of the largest values, due to the limited exponent range), only slightly less precise than the 113-bit significand of IEEE binary128 quadruple precision. The range of a double-double remains essentially the same as the double-precision format because the exponent has still 11 bits,[4] significantly lower than the 15-bit exponent of IEEE quadruple precision (a range of 1.8 × 10308 for double-double versus 1.2 × 104932 for binary128).

In particular, a double-double/quadruple-precision value q in the double-double technique is represented implicitly as a sum q = x + y of two double-precision values x and y, each of which supplies half of q's significand.[5] That is, the pair (x, y) is stored in place of q, and operations on q values (+, ?, ×, ...) are transformed into equivalent (but more complicated) operations on the x and y values. Thus, arithmetic in this technique reduces to a sequence of double-precision operations; since double-precision arithmetic is commonly implemented in hardware, double-double arithmetic is typically substantially faster than more general arbitrary-precision arithmetic techniques.[4][5]

Note that double-double arithmetic has the following special characteristics:[8]

  • As the magnitude of the value decreases, the amount of extra precision also decreases. Therefore, the smallest number in the normalized range is narrower than double precision. The smallest number with full precision is 1000...02 (106 zeros) × 2?1074, or 1.000...02 (106 zeros) × 2?968. Numbers whose magnitude is smaller than 2?1021 will not have additional precision compared with double precision.
  • The actual number of bits of precision can vary. In general, the magnitude of the low-order part of the number is no greater than a half ULP of the high-order part. If the low-order part is less than half ULP of the high-order part, significant bits (either all 0s or all 1s) are implied between the significand of the high-order and low-order numbers. Certain algorithms that rely on having a fixed number of bits in the significand can fail when using 128-bit long double numbers.
  • Because of the reason above, it is possible to represent values like 1 + 2?1074, which is the smallest representable number greater than 1.

In addition to the double-double arithmetic, it is also possible to generate triple-double or quad-double arithmetic if higher precision is required without any higher precision floating-point library. They are represented as a sum of three (or four) double-precision values respectively. They can represent operations with at least 159/161 and 212/215 bits respectively. A natural extension to an arbitrary number of terms (though limited by the exponent range) is called floating-point expansions.

A similar technique can be used to produce a double-quad arithmetic, which is represented as a sum of two quadruple-precision values. They can represent operations with at least 226 (or 227) bits.[9]

Implementations

[edit]

Quadruple precision is often implemented in software by a variety of techniques (such as the double-double technique above, although that technique does not implement IEEE quadruple precision), since direct hardware support for quadruple precision is, as of 2016, less common (see "Hardware support" below). One can use general arbitrary-precision arithmetic libraries to obtain quadruple (or higher) precision, but specialized quadruple-precision implementations may achieve higher performance.

Computer-language support

[edit]

A separate question is the extent to which quadruple-precision types are directly incorporated into computer programming languages.

Quadruple precision is specified in Fortran by the real(real128) (module iso_fortran_env from Fortran 2008 must be used, the constant real128 is equal to 16 on most processors), or as real(selected_real_kind(33, 4931)), or in a non-standard way as REAL*16. (Quadruple-precision REAL*16 is supported by the Intel Fortran Compiler[10] and by the GNU Fortran compiler[11] on x86, x86-64, and Itanium architectures, for example.)

For the C programming language, ISO/IEC TS 18661-3 (floating-point extensions for C, interchange and extended types) specifies _Float128 as the type implementing the IEEE 754 quadruple-precision format (binary128).[12] Alternatively, in C/C++ with a few systems and compilers, quadruple precision may be specified by the long double type, but this is not required by the language (which only requires long double to be at least as precise as double), nor is it common.

As of C++23, the C++ language defines a <stdfloat> header that contains fixed-width floating-point types. Implementations of these are optional, but if supported, std::float128_t corresponds to quadruple precision.

On x86 and x86-64, the most common C/C++ compilers implement long double as either 80-bit extended precision (e.g. the GNU C Compiler gcc[13] and the Intel C++ Compiler with a /Qlong?double switch[14]) or simply as being synonymous with double precision (e.g. Microsoft Visual C++[15]), rather than as quadruple precision. The procedure call standard for the ARM 64-bit architecture (AArch64) specifies that long double corresponds to the IEEE 754 quadruple-precision format.[16] On a few other architectures, some C/C++ compilers implement long double as quadruple precision, e.g. gcc on PowerPC (as double-double[17][18][19]) and SPARC,[20] or the Sun Studio compilers on SPARC.[21] Even if long double is not quadruple precision, however, some C/C++ compilers provide a nonstandard quadruple-precision type as an extension. For example, gcc provides a quadruple-precision type called __float128 for x86, x86-64 and Itanium CPUs,[22] and on PowerPC as IEEE 128-bit floating-point using the -mfloat128-hardware or -mfloat128 options;[23] and some versions of Intel's C/C++ compiler for x86 and x86-64 supply a nonstandard quadruple-precision type called _Quad.[24]

Zig provides support for it with its f128 type.[25]

Google's work-in-progress language Carbon provides support for it with the type called f128.[26]

As of 2024, Rust is currently working on adding a new f128 type for IEEE quadruple-precision 128-bit floats.[27]

Libraries and toolboxes

[edit]
  • The GCC quad-precision math library, libquadmath, provides __float128 and __complex128 operations.
  • The Boost multiprecision library Boost.Multiprecision provides unified cross-platform C++ interface for __float128 and _Quad types, and includes a custom implementation of the standard math library.[28]
  • The Multiprecision Computing Toolbox for MATLAB allows quadruple-precision computations in MATLAB. It includes basic arithmetic functionality as well as numerical methods, dense and sparse linear algebra.[29]
  • The DoubleFloats[30] package provides support for double-double computations for the Julia programming language.
  • The doubledouble.py[31] library enables double-double computations in Python. [citation needed]
  • Mathematica supports IEEE quad-precision numbers: 128-bit floating-point values (Real128), and 256-bit complex values (Complex256).[citation needed]

Hardware support

[edit]

IEEE quadruple precision was added to the IBM System/390 G5 in 1998,[32] and is supported in hardware in subsequent z/Architecture processors.[33][34] The IBM POWER9 CPU (Power ISA 3.0) has native 128-bit hardware support.[23]

Native support of IEEE 128-bit floats is defined in PA-RISC 1.0,[35] and in SPARC V8[36] and V9[37] architectures (e.g. there are 16 quad-precision registers %q0, %q4, ...), but no SPARC CPU implements quad-precision operations in hardware as of 2004.[38]

Non-IEEE extended-precision (128 bits of storage, 1 sign bit, 7 exponent bits, 112 fraction bits, 8 bits unused) was added to the IBM System/370 series (1970s–1980s) and was available on some System/360 models in the 1960s (System/360-85,[39] -195, and others by special request or simulated by OS software).

The Siemens 7.700 and 7.500 series mainframes and their successors support the same floating-point formats and instructions as the IBM System/360 and System/370.

The VAX processor implemented non-IEEE quadruple-precision floating point as its "H Floating-point" format. It had one sign bit, a 15-bit exponent and 112-fraction bits, however the layout in memory was significantly different from IEEE quadruple precision and the exponent bias also differed. Only a few of the earliest VAX processors implemented H Floating-point instructions in hardware, all the others emulated H Floating-point in software.

The NEC Vector Engine architecture supports adding, subtracting, multiplying and comparing 128-bit binary IEEE 754 quadruple-precision numbers.[40] Two neighboring 64-bit registers are used. Quadruple-precision arithmetic is not supported in the vector register.[41]

The RISC-V architecture specifies a "Q" (quad-precision) extension for 128-bit binary IEEE 754-2008 floating-point arithmetic.[42] The "L" extension (not yet certified) will specify 64-bit and 128-bit decimal floating point.[43]

Quadruple-precision (128-bit) hardware implementation should not be confused with "128-bit FPUs" that implement SIMD instructions, such as Streaming SIMD Extensions or AltiVec, which refers to 128-bit vectors of four 32-bit single-precision or two 64-bit double-precision values that are operated on simultaneously.

See also

[edit]

References

[edit]
  1. ^ Bailey, David H.; Borwein, Jonathan M. (July 6, 2009). "High-Precision Computation and Mathematical Physics" (PDF).
  2. ^ Higham, Nicholas (2002). "Designing stable algorithms" in Accuracy and Stability of Numerical Algorithms (2 ed). SIAM. p. 43.
  3. ^ Kahan, Wiliam (1 October 1987). "Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic" (PDF).
  4. ^ a b c d Yozo Hida, X. Li, and D. H. Bailey, Quad-Double Arithmetic: Algorithms, Implementation, and Application, Lawrence Berkeley National Laboratory Technical Report LBNL-46996 (2000). Also Y. Hida et al., Library for double-double and quad-double arithmetic (2007).
  5. ^ a b c J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, Discrete & Computational Geometry 18: 305–363, 1997.
  6. ^ Knuth, D. E. The Art of Computer Programming (2nd ed.). chapter 4.2.3. problem 9.
  7. ^ Robert Munafo. F107 and F161 High-Precision Floating-Point Data Types (2011).
  8. ^ 128-Bit Long Double Floating-Point Data Type.
  9. ^ sourceware.org Re: The state of glibc libm
  10. ^ "Intel Fortran Compiler Product Brief (archived copy on web.archive.org)" (PDF). Su. Archived from the original on October 25, 2008. Retrieved 2025-08-05.
  11. ^ "GCC 4.6 Release Series - Changes, New Features, and Fixes". Retrieved 2025-08-05.
  12. ^ "ISO/IEC TS 18661-3" (PDF). 2025-08-05. Retrieved 2025-08-05.
  13. ^ i386 and x86-64 Options (archived copy on web.archive.org), Using the GNU Compiler Collection.
  14. ^ Intel Developer Site.
  15. ^ MSDN homepage, about Visual C++ compiler.
  16. ^ "Procedure Call Standard for the ARM 64-bit Architecture (AArch64)" (PDF). 2025-08-05. Archived from the original (PDF) on 2025-08-05. Retrieved 2025-08-05.
  17. ^ RS/6000 and PowerPC Options, Using the GNU Compiler Collection.
  18. ^ Inside Macintosh – PowerPC Numerics. Archived October 9, 2012, at the Wayback Machine.
  19. ^ 128-bit long double support routines for Darwin.
  20. ^ SPARC Options, Using the GNU Compiler Collection.
  21. ^ The Math Libraries, Sun Studio 11 Numerical Computation Guide (2005).
  22. ^ Additional Floating Types, Using the GNU Compiler Collection
  23. ^ a b "GCC 6 Release Series - Changes, New Features, and Fixes". Retrieved 2025-08-05.
  24. ^ Intel C++ Forums (2007).
  25. ^ "Floats". ziglang.org. Retrieved 7 January 2024.
  26. ^ "Carbon Language's main repository - Language design". GitHub. 2025-08-05. Retrieved 2025-08-05.
  27. ^ Cross, Travis. "Tracking Issue for f16 and f128 float types". GitHub. Retrieved 2025-08-05.
  28. ^ "Boost.Multiprecision – float128". Retrieved 2025-08-05.
  29. ^ Holoborodko, Pavel (2025-08-05). "Fast Quadruple Precision Computations in MATLAB". Retrieved 2025-08-05.
  30. ^ "DoubleFloats.jl". GitHub.
  31. ^ "doubledouble.py". GitHub.
  32. ^ Schwarz, E. M.; Krygowski, C. A. (September 1999). "The S/390 G5 floating-point unit". IBM Journal of Research and Development. 43 (5/6): 707–721. CiteSeerX 10.1.1.117.6711. doi:10.1147/rd.435.0707.
  33. ^ Gerwig, G.; Wetter, H.; Schwarz, E. M.; Haess, J.; Krygowski, C. A.; Fleischer, B. M.; Kroener, M. (May 2004). "The IBM eServer z990 floating-point unit. IBM J. Res. Dev. 48". pp. 311–322.
  34. ^ Schwarz, Eric (June 22, 2015). "The IBM z13 SIMD Accelerators for Integer, String, and Floating-Point" (PDF). Archived from the original (PDF) on July 13, 2015. Retrieved July 13, 2015.
  35. ^ "Implementor support for the binary interchange formats". IEEE. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  36. ^ The SPARC Architecture Manual: Version 8 (archived copy on web.archive.org) (PDF). SPARC International, Inc. 1992. Archived from the original (PDF) on 2025-08-05. Retrieved 2025-08-05. SPARC is an instruction set architecture (ISA) with 32-bit integer and 32-, 64-, and 128-bit IEEE Standard 754 floating-point as its principal data types.
  37. ^ Weaver, David L.; Germond, Tom, eds. (1994). The SPARC Architecture Manual: Version 9 (archived copy on web.archive.org) (PDF). SPARC International, Inc. Archived from the original (PDF) on 2025-08-05. Retrieved 2025-08-05. Floating-point: The architecture provides an IEEE 754-compatible floating-point instruction set, operating on a separate register file that provides 32 single-precision (32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit) registers, or a mixture thereof.
  38. ^ "SPARC Behavior and Implementation". Numerical Computation Guide — Sun Studio 10. Sun Microsystems, Inc. 2004. Retrieved 2025-08-05. There are four situations, however, when the hardware will not successfully complete a floating-point instruction: ... The instruction is not implemented by the hardware (such as ... quad-precision instructions on any SPARC FPU).
  39. ^ Padegs, A. (1968). "Structural aspects of the System/360 Model 85, III: Extensions to floating-point architecture". IBM Systems Journal. 7: 22–29. doi:10.1147/sj.71.0022.
  40. ^ Vector Engine AssemblyLanguage Reference Manual, Chapter4 Assembler Syntax page 23.
  41. ^ SX-Aurora TSUBASA Architecture Guide Revision 1.1, pp. 38, 60.
  42. ^ RISC-V ISA Specification v. 20191213, Chapter 13, “Q” Standard Extension for Quad-Precision Floating-Point, page 79.
  43. ^ [1] Chapter 15, p. 95.
[edit]
乳腺穿刺是什么意思 帝陀表什么档次 丧尽天良什么意思 就不告诉你就不告诉你是什么儿歌 什么主食含糖量低
酸麻胀痛痒各代表什么 血管瘤长什么样子图片 梦见龙卷风是什么预兆 枕大池增大什么意思 算理是什么意思
b2b是什么 吃什么止泻 椅子像什么 肉馅可以做什么美食 肺阴不足的症状是什么
血用什么能洗掉 peb是什么意思 守是什么生肖 今年30岁属什么生肖 下旬是什么意思
女生下体长什么样子hcv7jop9ns8r.cn 童心未泯什么意思hcv8jop1ns2r.cn 疖子是什么xinjiangjialails.com 暗网是什么hcv9jop0ns5r.cn hcv是什么病毒hcv9jop5ns1r.cn
花中皇后是什么花0297y7.com 保守是什么意思hcv7jop7ns2r.cn 大包子什么馅好吃hcv7jop9ns7r.cn 儿童风寒咳嗽吃什么药hcv9jop0ns1r.cn 心率偏低是什么原因hcv7jop9ns8r.cn
瘊子是什么hcv9jop6ns8r.cn 大便想拉又拉不出来是什么原因hcv8jop6ns0r.cn 做背有什么好处及作用hcv7jop4ns8r.cn 北京大裤衩建筑叫什么1949doufunao.com 茵陈是什么hcv8jop0ns8r.cn
六亲不认是什么生肖hcv8jop7ns9r.cn 11.11什么星座hcv8jop1ns6r.cn 拉红色的屎是什么原因hlguo.com 姜对头发有什么作用hcv9jop7ns2r.cn 男人眼角有痣代表什么hcv7jop6ns1r.cn
百度