年岁是什么意思| 72年属什么生肖属相| 斜视是什么意思| 嘴角烂是什么原因| 玳瑁色是什么颜色| 嘎嘎嘎是什么意思| 动车与高铁有什么区别| 青海省会城市叫什么| 右手有点麻是什么原因| 甲龙吃什么| 痛风能吃什么肉| 电轴右偏是什么意思| 双子女喜欢什么样的男生| 拔牙挂什么科| 夜宵和宵夜有什么区别| 梦见笑是什么意思| 120是什么电话| 绝经是什么意思| 73岁属什么| 咽喉炎有什么症状| 掉头发吃什么恢复最快| 尿是褐色的是什么原因| 什么叫打板| 血液病是什么病| 抑郁症是什么病| 童五行属什么| 癫痫属于什么科| 牵牛花是什么颜色的| 既往史是什么意思| 喝什么酒对身体好| 八百里加急是什么意思| 职业暴露是什么意思| 额头上长斑是什么原因造成的| 降龙十八掌最后一掌叫什么| 身上出现白块什么原因| 痔疮术后吃什么恢复快| 双肺纹理粗重什么意思| 李子和什么不能一起吃| 女孩子学什么专业比较好| 非议是什么意思| 济南是什么城| 36朵玫瑰花代表什么意思| 基因检测是什么意思| 梦见卖东西是什么意思| 嗓子痒痒老想咳嗽是什么原因| kda是什么意思| 买房要看什么| 粘胶是什么材质| 京东公司全称是什么| 裸婚什么意思| hpv检查前需要注意什么| 狼毫毛笔是什么毛| 防风通圣颗粒治什么病| 内科主要看什么病| 脾大吃什么药能缩小| 太虚幻境是什么意思| 开业送什么礼物好| 9月1号什么星座| 香蕉和什么一起吃能减肥| 月经量少要吃什么调理| 生灵涂炭是什么意思| 拉屎是绿色的是什么原因| 梦见给别人理发是什么意思| 中国属于什么人种| 吃黑木耳有什么好处| 老人说胡话是什么征兆| 沙加女是什么字| 天天喝牛奶有什么好处| 什么叫女人味| 节点是什么| 在眼皮老跳是什么征兆| 丝瓜水敷脸有什么作用| vd是什么| 什么叫认知| 一级医院是什么意思| 三七粉适合什么人群喝| 刘彻是刘邦的什么人| 全身发烫但不发烧是什么原因| 背靠背协议是什么意思| 滑档是什么意思| 胡萝卜和什么榨汁好喝| 应用心理学是什么| 1991是什么年| 洁癖是什么意思| 阴虚内热吃什么中成药| 古力娜扎全名叫什么| 吕布是什么生肖| 孕妇可以吃什么水果| 什么的拳头| 长颈鹿的脖子为什么那么长| 老人适合喝什么茶| ck是什么| 属鸡的是什么命| 背锅侠是什么意思| 印代表什么| 明年是什么生肖| 鹅肝为什么那么贵| 毫不逊色的意思是什么| 红色裤子配什么上衣好看| 高血压吃什么食物| 胡萝卜不能和什么食物一起吃| 85年五行属什么| 哭有什么好处| 熊猫血是什么血型| 机不可失的下一句是什么| 胎儿停止发育是什么原因造成的| 强直性脊柱炎看什么科| 蛋白尿是什么| 卡码是什么意思| 喝什么饮料解酒最快最有效| 搬家当天有什么讲究| 身上老出汗是什么原因引起的| 腰椎退行性改变是什么意思| 滋阴潜阳是什么意思| 夕阳是什么时候| 为什么健身后体重反而重了| 血友病是什么遗传方式| 做梦拉屎是什么意思| 前胸后背出汗多是什么原因| 平安夜什么时候吃苹果| 梦见杀人是什么预兆| 八大菜系之首是什么菜| 非洲割礼是什么| q10什么时候吃最好| 吃什么可以长头发| 大水牛是什么意思| 输卵管为什么会堵塞原因是什么| 吃芒果不能吃什么| 验孕棒什么时候测最准| 去港澳旅游需要什么证件| 姨妈有血块是什么原因| 百日咳吃什么药| 光年是什么单位| psa升高代表什么| 下午5点多是什么时辰| 乳腺结节不能吃什么| 结婚婚检都检查什么项目| 液基细胞学检查是什么| 保护嗓子长期喝什么茶| 学前教育学什么| 怕老婆的男人说明什么| elisa是什么检测方法| 玉米淀粉是什么| 属兔配什么属相最好| 被舔下面什么感觉| 为什么会下雨| 要强是什么意思| 舌头干涩是什么原因| 女生是什么意思| 7月有什么活动| 舌苔发白厚吃什么药| 送孕妇什么礼物最贴心| 炖鸡块放什么调料| 治疗宫颈炎用什么药好得快| 6月什么星座| hev是什么意思| 女人戴黄金有什么好处| 天蝎座喜欢什么样的女生| 橱柜用什么材料好| 牙龈肿痛用什么药好得快| 小分子肽能治什么病| 白细胞高一点点是什么原因| 生菜是什么菜| 水淀粉是什么粉| 百合什么意思| 胸长什么样| 肠子有问题有什么症状| 六安瓜片属于什么茶| 什么东西天气越热它爬得越高| 曲奇是什么意思| 什么草药可以止痒| 天王表属于什么档次| 高血脂是什么原因引起的| 黑加出念什么| 917是什么星座| 小孩老是打嗝是什么原因| 缓刑是什么意思还要坐牢吗| 猴子偷桃是什么生肖| 梦见金蛇有什么预兆| 戊午五行属什么| 敏感是什么意思| 田加比念什么| 木字旁的字与什么有关| 口角是什么意思| ms.是什么意思| 地中海贫血是什么意思| 鹤立鸡群代表什么生肖| 什么材质的拖鞋不臭脚| 咳嗽发烧吃什么药| 尿酸高吃什么可以降下去| 痛经 吃什么| 蜻蜓为什么要点水| 6月28日是什么日子| 牙齿发白是什么原因| 胃疼吃什么药最有效| 小便有泡沫是什么原因| 1936属什么生肖| pet是什么检查| 比音勒芬是什么档次| 中校是什么级别| 桂花树施什么肥| 浪人是什么意思| 补办港澳通行证需要什么材料| 豺狼虎豹为什么豺第一| 艾司唑仑片是什么药| 去加一笔是什么字| iac是什么意思| 诚五行属什么| 宝是什么生肖| 黄字五行属什么| 溥仪和慈禧什么关系| 鲜黄花菜含有什么毒素| 射精无力是什么原因| hpv病毒是什么意思| 在编是什么意思| 星芒是什么意思| 室性早搏吃什么药| 乳房旁边疼是什么原因| 什么的大象| 指甲花学名叫什么| 千千结是什么意思| 小孩为什么会细菌感染| 腹透是什么意思| 牙齿酸痛吃什么药| 月经来了同房会导致什么后果| 孕妇为什么不能吃韭菜| 干咳挂什么科| 妊娠囊是什么| 女人鼻子大代表什么| as是什么| 低血压平时要注意什么| 什么是川崎病| 什么是刺身| 扁平疣长什么样| 桃花像什么| aoa是什么意思| 福建有什么好吃的| 氯化钠是什么| 胃炎吃什么食物好养胃| 什么人不能摆放大象| 尿囊素是什么| 什么是静脉血栓| 括约肌是什么| 1994属什么生肖| 什么人适合吃人参| 平滑肌是什么| 钙化什么意思| 内什么外什么| 梦见黑蛇是什么预兆| 胸闷气短挂什么科室| 羊蛋是什么部位| 肌层彩色血流星点状是什么意思| 谈婚论嫁什么意思| shy是什么意思| 什么叫统招生| 戒掉手淫有什么好处| 梦见自己拉了好多屎是什么意思| 脸部爱出油是什么原因| 1973年属牛的是什么命| 中焦不通吃什么药| 什么是间质瘤| 正常人尿液是什么颜色| 中国特工组织叫什么| 六安瓜片属于什么茶| 百度Jump to content

新老势力圈地笔记本市场 全球5亿台PC面临换代

From Wikipedia, the free encyclopedia
百度 此外,中国市场要比韩国市场更复杂,三星正在尝试不同的方法。

Model collapse[note 1] is a phenomenon where machine learning models gradually degrade due to errors coming from uncurated training on the outputs of another model, such as prior versions of itself.[9][10][11][12] Such outputs are known as synthetic data. It is a possible mechanism for mode collapse.

Shumailov et al.[9] coined the term and described two specific stages to the degradation: early model collapse and late model collapse:

  • In early model collapse, the model begins losing information about the tails of the distribution – mostly affecting minority data. Later work highlighted that early model collapse is hard to notice, since overall performance may appear to improve, while the model loses performance on minority data.[13]
  • In late model collapse, the model loses a significant proportion of its performance, confusing concepts and losing most of its variance.

Mechanism

[edit]

Using synthetic data as training data can lead to issues with the quality and reliability of the trained model.[14][15] Model collapse occurs for three main reasons:

  1. functional approximation errors
  2. sampling errors
  3. learning errors[9]

Importantly, it happens in even the simplest of models, where not all of the error sources are present. In more complex models the errors often compound, leading to faster collapse.

Disagreement over real-world impact

[edit]
Model collapse in generative models is reduced when data accumulates.

Some researchers and commentators on model collapse warn that the phenomenon could fundamentally threaten future generative AI development: As AI-generated data is shared on the Internet, it will inevitably end up in future training datasets, which are often crawled from the Internet. If training on "slop" (large quantities of unlabeled synthetic data) inevitably leads to model collapse, this could therefore pose a difficult problem.[16]

However, recently, other researchers have disagreed with this argument, showing that if synthetic data accumulates alongside human-generated data, model collapse is avoided.[17] The researchers argue that data accumulating over time is a more realistic description of reality than deleting all existing data every year, and that the real-world impact of model collapse may not be as catastrophic as feared.[18]

An alternative branch of the literature investigates the use of machine learning detectors and watermarking to identify model generated data and filter it out.[19][20]

Mathematical models of the phenomenon

[edit]

1D Gaussian model

[edit]

In 2024,[9] a first attempt has been made at illustrating collapse for the simplest possible model?—?a single dimensional normal distribution fit using unbiased estimators of mean and variance, computed on samples from the previous generation.

To make this more precise, we say that original data follows a normal distribution , and we possess samples for . Denoting a general sample as sample at generation , then the next generation model is estimated using the sample mean and variance:

Leading to a conditionally normal next generation model . In theory, this is enough to calculate the full distribution of . However, even after the first generation, the full distribution is no longer normal: It follows a variance-gamma distribution.

To continue the analysis, instead of writing the probability density function at each generation, it is possible to explicitly construct them in terms of independent random variables using Cochran's theorem. To be precise, and are independent, with and , following a Gamma distribution. Denoting with Gaussian random variables distributed according to and with random variables distributed with , it turns out to be possible to write samples at each generation as

and more generally

Note, that these are not joint distributions, as and depend directly on , but when considering on its own the formula above provides all the information about the full distribution.

To analyse the model collapse, we can first calculate variance and mean of samples at generation . This would tell us what kind of distributions we expect to arrive at after generations. It is possible to find its exact value in closed form, but the mean and variance of the square root of gamma distribution are expressed in terms of gamma functions, making the result quite clunky. Following,[9] it is possible to expand all results to second order in each of , assuming each sample size to be large. It is then possible to show that

And if all sample sizes are constant, this diverges linearly as :

This is the same scaling as for a single dimensional Gaussian random walk. However, divergence of the variance of does not directly provide any information about the corresponding estimates of and , particularly how different they are from the original and . It turns out to be possible to calculate the distance between the true distribution and the approximated distribution at step , using the Wasserstein-2 distance (which is also sometimes referred to as risk):

This directly shows why model collapse occurs in this simple model. Due to errors from re-sampling the approximated distribution, each generation ends up corresponding to a new step in a random walk of model parameters. For a constant sample size at each generation, the average distance from the starting point diverges, and in order for the end distribution approximation to be accurate, or for the distance to be finite, the sampling rate needs to increase superlinearly, i.e. one needs to collect increasingly more samples over time, perhaps quadratically. However, even in that case the expected distance after steps remains non-zero and the only case in which it does in fact end up being zero is when sampling is infinite at each step. Overall, this only shows us how far on average one ends up from the original distribution, but the process can only "terminate", if the estimated variance at a certain generation becomes small enough, effectively turning the distribution into a delta function. This is shown to occur for a general gaussian model[14] in the subsection below. Empirical investigation has confirmed this theoretical analysis.[21]

N-D Gaussian model

[edit]

Furthermore, in the case of multidimensional model with fully synthetic data, exact collapse can be shown.[14][9]

Linear regression

[edit]

In the case of a linear regression model,[22][23] scaling laws and bounds on learning can be obtained.

Statistical language model

[edit]

In the case of a linear softmax classifier for next token prediction,[24] exact bounds on learning with even a partially synthetic dataset can be obtained.

Impact on large language models

[edit]

In the context of large language models, research found that training LLMs on predecessor-generated text?—?language models are trained on the synthetic data produced by previous models?—?causes a consistent decrease in the lexical, syntactic, and semantic diversity of the model outputs through successive iterations, notably remarkable for tasks demanding high levels of creativity.[25]

See also

[edit]

Notes

[edit]
  1. ^ Also known by other names, such as "AI inbreeding",[1][2] "AI cannibalism",[3][4] "Habsburg AI",[5] and "model autophagy disorder", abbreviated "MAD"[6][7][8]

References

[edit]
  1. ^ "'Generative inbreeding' and its risk to human culture". 26 August 2023.
  2. ^ "AI could choke on its own exhaust as it fills the web". 28 August 2023.
  3. ^ "AI Cannibalism and the Law – Colorado Technology Law Journal".
  4. ^ "The Curious Case of AI Cannibalism & Possible Solutions". 26 July 2023.,
  5. ^ "Inbred, gibberish or just MAD? Warnings rise about AI models". France 24. 2025-08-14. Retrieved 2025-08-14.
  6. ^ "Model Autophagy Disorder – the Livescu Initiative on Neuro, Narrative and AI".
  7. ^ "Generative AI Goes 'MAD' when Trained on AI-Created Data over Five Times". 12 July 2023.
  8. ^ Alemohammad, Sina; Casco-Rodriguez, Josue; Luzi, Lorenzo; Ahmed Imtiaz Humayun; Babaei, Hossein; LeJeune, Daniel; Siahkoohi, Ali; Baraniuk, Richard G. (2023). "Self-Consuming Generative Models Go MAD". arXiv:2307.01850 [cs.LG].
  9. ^ a b c d e f Shumailov, Ilia; Shumaylov, Zakhar; Zhao, Yiren; Papernot, Nicolas; Anderson, Ross; Gal, Yarin (July 2024). "AI models collapse when trained on recursively generated data". Nature. 631 (8022): 755–759. Bibcode:2024Natur.631..755S. doi:10.1038/s41586-024-07566-y. ISSN 1476-4687. PMC 11269175. PMID 39048682.
  10. ^ Shumailov, Ilia; Shumaylov, Zakhar; Zhao, Yiren; Gal, Yarin; Papernot, Nicolas; Anderson, Ross (2025-08-14). "The Curse of Recursion: Training on Generated Data Makes Models Forget". arXiv:2305.17493 [cs.LG].
  11. ^ Ozsevim, Ilkhan (2025-08-14). "Research finds ChatGPT & Bard headed for 'Model Collapse'". Retrieved 2025-08-14.
  12. ^ Mok, Aaron. "A disturbing AI phenomenon could completely upend the internet as we know it". Business Insider. Retrieved 2025-08-14.
  13. ^ Wyllie, Sierra; Shumailov, Ilia; Papernot, Nicolas (2025-08-14). "Fairness Feedback Loops: Training on Synthetic Data Amplifies Bias". The 2024 ACM Conference on Fairness, Accountability, and Transparency. FAccT '24. New York, NY, USA: Association for Computing Machinery. pp. 2113–2147. arXiv:2403.07857. doi:10.1145/3630106.3659029. ISBN 979-8-4007-0450-5.
  14. ^ a b c Alemohammad, Sina; Casco-Rodriguez, Josue; Luzi, Lorenzo; Humayun, Ahmed Imtiaz; Babaei, Hossein; LeJeune, Daniel; Siahkoohi, Ali; Baraniuk, Richard G. (July 4, 2023). "Self-Consuming Generative Models Go MAD". arXiv:2307.01850 [cs.LG].
  15. ^ Self-Consuming Generative Models Go MAD. The Twelfth International Conference on Learning Representations.
  16. ^ "What is Model Collapse and how to avoid it". The Register. Retrieved 11 July 2024.
  17. ^ Gerstgrasser, Matthias; Schaeffer, Rylan; Dey, Apratim; Rafailov, Rafael; Sleight, Henry; Hughes, John; Korbak, Tomasz; Agrawal, Rajashree; Pai, Dhruv; Gromov, Andrey; Roberts, Daniel A.; Yang, Diyi; Donoho, David L.; Koyejo, Sanmi (2025-08-14). "Is Model Collapse Inevitable? Breaking the Curse of Recursion by Accumulating Real and Synthetic Data". arXiv:2404.01413 [cs.LG].
  18. ^ "Big brains divided over training AI with more AI: Is model collapse inevitable?". The Register. Retrieved 11 July 2024.
  19. ^ Kirchenbauer, John; Geiping, Jonas; Wen, Yuxin; Katz, Jonathan; Miers, Ian; Goldstein, Tom (2025-08-14). "A Watermark for Large Language Models". Proceedings of the 40th International Conference on Machine Learning. PMLR: 17061–17084.
  20. ^ "My AI Safety Lecture for UT Effective Altruism". Shtetl-Optimized. 2025-08-14. Retrieved 2025-08-14.
  21. ^ Borji, Ali (2025-08-14). "A Note on Shumailov et al. (2024): "AI Models Collapse When Trained on Recursively Generated Data"". arXiv:2410.12954 [cs.LG].
  22. ^ Dohmatob, Elvis; Feng, Yunzhen; Kempe, Julia (2025-08-14). "Model Collapse Demystified: The Case of Regression". arXiv:2402.07712 [cs.LG].
  23. ^ Dohmatob, Elvis; Feng, Yunzhen; Yang, Pu; Charton, Francois; Kempe, Julia (2025-08-14). "A Tale of Tails: Model Collapse as a Change of Scaling Laws". arXiv:2402.07043 [cs.LG].
  24. ^ Seddik, Mohamed El Amine; Chen, Suei-Wen; Hayou, Soufiane; Youssef, Pierre; Debbah, Merouane (2025-08-14). "How Bad is Training on Synthetic Data? A Statistical Analysis of Language Model Collapse". arXiv:2404.05090 [cs.LG].
  25. ^ Guo, Yanzhu; Shang, Guokan; Vazirgiannis, Michalis; Clavel, Chloé (2025-08-14). "The Curious Decline of Linguistic Diversity: Training Language Models on Synthetic Text". arXiv:2311.09807 [cs.CL].
缺德是什么意思 美女是指什么生肖 什么时候放开二胎 太多的理由太多的借口是什么歌 珍珠龟吃什么
儿童红眼病用什么眼药水 降结肠在什么位置 卵巢筛查要做什么检查 头晕挂什么科室 44什么意思
父母有刑是什么意思 婴儿第一次发烧叫什么 紫色心情是什么意思 重日是什么意思 发蒙是什么意思
后背有痣代表什么 大专有什么专业 吃什么排便顺畅 胸疼是什么原因引起的 1948年属什么生肖
我用什么才能留住你hcv7jop6ns9r.cn 头疼是什么原因hcv7jop9ns8r.cn 咳绿痰是什么原因hcv9jop5ns7r.cn 列巴是什么hcv7jop6ns4r.cn 心窦过缓是什么原因hcv9jop0ns5r.cn
菊花和枸杞泡水喝有什么功效hcv8jop4ns0r.cn rsa胎位是什么意思hcv8jop2ns5r.cn cathy什么意思hcv8jop8ns0r.cn mmc什么意思bysq.com 鬼压床是什么hcv8jop7ns4r.cn
米老鼠叫什么名字hcv9jop1ns2r.cn 普惠幼儿园是什么意思hcv8jop0ns7r.cn 什么是轻食hkuteam.com 宝宝咳嗽挂什么科hcv9jop0ns4r.cn 记忆力减退吃什么药效果好hcv9jop1ns1r.cn
8月17号是什么日子hcv8jop5ns4r.cn 三叉戟是什么车hcv9jop6ns0r.cn 血红蛋白浓度偏高是什么原因hcv9jop3ns7r.cn 为什么经常长口腔溃疡hcv9jop6ns4r.cn 胃疼挂什么科hcv9jop2ns3r.cn
百度