屈膝是什么意思| 焦虑症是什么意思| 反刍是什么意思| fcm是什么意思| 智商高的人有什么特征| 麦冬长什么样| 火加良念什么| 盆腔炎吃什么药好| 健硕是什么意思| 什么止咳效果最好最快| 7朵玫瑰花代表什么意思| 爽肤水是什么| 胎盘成熟度1级是什么意思| 许三多最后是什么军衔| 皮肤黄适合穿什么颜色的衣服| 什么是有机物什么是无机物| 耄耋之年是什么意思| 胃肠感冒什么症状| 什么的大自然| 大龄补贴需要什么条件| 喝什么茶去湿气最好| 避孕药吃了有什么副作用| 中途疲软吃什么药| 血压高吃什么药最好| 什么是热辐射| boss是什么意思| 猪肚子和什么煲汤最好| 夏季喝什么茶| 梦见自己大出血是什么征兆| 唇周发黑是什么原因| 吃瓜群众是什么意思| 大姨妈黑色是什么原因| 钾高是什么原因造成的| 据说是什么意思| 男生早上为什么会晨勃| 女孩子学什么专业比较好| 高血压可以吃什么水果| 入殓师是做什么的| 白眼球有红血丝是什么原因| 道德什么意思| 什么是假性狐臭| 总胆固醇高有什么危害| 6月18什么星座| trans什么意思| 尿液发黄是什么原因| 瞑眩反应是什么意思| 舒张压偏低是什么原因| 结婚唱什么歌送给新人| 为什么会心肌梗死| 血糖高不能吃什么| 胸痛一阵一阵的痛什么原因| 跑步后尿血是什么情况| 蜜蜂是什么生肖| 黑胡桃色是什么颜色| 大腿抽筋是什么原因引起的| 焦虑症吃什么中成药| 孕妇心率快是什么原因| 香港电话前面加什么| 面色少华是什么意思| 手脚脱皮是什么原因| 肉桂是什么茶| 冷的什么| 瓜子脸剪什么发型好看| 亚硝酸盐阴性是什么意思| 皮肤越抓越痒是什么原因| 蕊字五行属什么| 腌肉用什么淀粉| 三百年前是什么朝代| 暂告一段落是什么意思| 出现的反义词是什么| 手上长老年斑是什么原因| 哈密瓜为什么叫哈密瓜| 肾素活性高是什么原因| 男人做什么运动能提高性功能| 大闸蟹什么时候吃| 土茯苓和什么煲汤最好| 得了咽炎有什么症状| 西替利嗪是什么药| 一九七八年属什么生肖| 打乙肝疫苗需要注意什么| 什么心什么意| 不排大便是什么原因| 属马的生什么属相的宝宝好| 墙内开花墙外香是什么意思| 小叶苦丁茶有什么作用和功效| 月经量多是什么原因导致的| 老是掉头发是什么原因| 晚上8点到9点是什么时辰| 大校上面是什么军衔| 舌苔厚发黄是什么原因| 弢是什么意思| hpv68阳性是什么意思| 墨鱼干和什么煲汤最好| 痛风频繁发作说明什么| 树洞什么意思| 乌纱帽是什么意思| 直肠肿物是什么意思| 浅表性胃炎用什么药| 6月18日是什么节日| 脉压差小是什么原因| 嗓子疼有痰吃什么药| ace是什么| 缺钾是什么原因引起的| 黄芪入什么经| 寒冷的反义词是什么| 新疆是什么民族| 为什么我| 倒挂对身体有什么好处| 夏至该吃什么| 五险一金包括什么| 千什么百什么| 手心烫是什么原因| 猪大肠炒什么好吃| 群星是什么意思| 人为什么会打呼噜| 国字五行属什么| 胆固醇高不能吃什么食物| 彤五行属什么| 什么是血脂| 坐位体前屈是什么| 媛交是什么意思| 超市理货员是做什么的| 罗非鱼吃什么| 肠胃胀气是什么原因| 十岁女孩喜欢什么礼物| 芊芊是什么意思| 朱字五行属什么| 自由职业可以做什么| 很轴是什么意思| 为什么肚子会胀气| 置换是什么意思| 婴儿反复发烧是什么原因引起的| 少校什么级别| a股是什么| 免疫球蛋白适合什么人| 身上为什么老是痒| 手心脚心热是什么原因| 前列腺肥大是什么症状| 如履薄冰是什么意思| 吃饭咬到舌头什么原因| 反洗钱是什么意思| 自缢痣是什么意思| ercp是什么| 2022年属什么生肖| 润月是什么意思| 低血压高什么原因| 支原体吃什么药最有效| 甜杆和甘蔗有什么区别| 梦见自己打胎是什么意思| 什么是介入治疗| 芬太尼是什么| 绞肠痧是什么病| 梦见吃排骨是什么意思| 手背肿是什么原因| 什么烟比较好抽| 菊花什么时候开| 脉搏快是什么原因| 老年性阴道炎用什么药| 耕田是什么意思| 肺动脉流什么血| 照身份证穿什么颜色的衣服| 武装部部长是什么级别| 灵芝长在什么地方| 明哲保身是什么生肖| 水滴石穿是什么变化| apm是什么| 什么是原研药| 累赘是什么意思| 石龙子吃什么| 什么东东| 什么叫房颤| 今年25岁属什么生肖| 长期腹泻是什么病| 昆仑雪菊有什么功效| 不食人间烟火是什么意思| 年上是什么意思| 得不到的永远在骚动什么意思| 身份证有x代表什么| 吃人嘴短拿人手软什么意思| 孕妇佩戴什么保胎辟邪| 印度人为什么用手抓饭吃| 什么时候取环最合适| 肽是什么| 煮粥用什么锅最好| 小孩个子矮小吃什么促进生长发育| 霉菌性阴炎用什么药止痒效果好| 鞭长莫及什么意思| 为什么二楼比三楼好| 头发油的快是什么原因| 七九年属什么的| 什么发什么强| 有恃无恐什么意思啊| 孕妇喝什么牛奶好| 味精和鸡精有什么区别| 锁骨上有痣代表什么| bebe是什么意思| 为什么胆固醇高| 送护士女朋友什么礼物| 蛋白粉什么时候吃效果最好| 抑郁状态和抑郁症有什么区别| 粪便隐血试验弱阳性是什么意思| 38岁适合什么护肤品| 印第安人是什么人种| 什么情况需要割包皮| 记性越来越差是什么原因| 眼睛发黄是什么原因引起的| 根茎叶属于什么器官| 00年属龙的是什么命| 上将是什么级别| OK镜适合什么年龄| 脾虚有什么症状| 坎宅是什么意思| 脾胃虚寒有什么症状| 看见乌鸦有什么预兆| 什么东西倒立后会增加一半| 蚕豆病是什么病有什么症状| 腰斩什么意思| 一什么节日| 读书的意义是什么| 养兰花用什么土最好| 铁是什么颜色的| 海肠是什么东西| 蒲公英泡水喝有什么好处| 左手小指疼痛预兆什么| 凝血常规是查什么的| 梦见哭是什么意思| 什么叫肺间质病变| 澳门有什么特产| 口缘字一半念什么| handmade是什么牌子| 孩子打嗝是什么原因| 吃饭掉筷子有什么预兆| 行尸走肉是什么动物| mastercard是什么意思| 什么宠物好养又干净| 豚是什么动物| 哪吒长什么样子| 养兰花用什么土最好| 胃窦是什么| ipa是什么意思| 朴树是什么树| 房性心动过速是什么意思| 大圣是什么生肖| 女人为什么会宫外怀孕| 冰粉为什么要加石灰水| 520是什么节日| 拔牙后吃什么恢复快| 子宫肌层回声欠均匀是什么意思| 胃疼可以吃什么食物| 红参适合什么人吃| 生闷气是什么意思| 不利是什么意思| 红艳煞是什么意思| 头晕眼睛模糊是什么原因| 7月4号是什么节日| 524是什么意思| 疱疹有什么症状表现| 晚上看见蛇预示着什么| 低分化腺癌是什么意思| 曦字五行属什么| 肾精亏虚吃什么药| 人属于什么界门纲目科属种| 屁股疼吃什么药| 药流有什么危害| 百度Jump to content

两办印发关于提高技术工人待遇的意见

From Wikipedia, the free encyclopedia
Graphic describing the Hyperbolastic Type I function with varying parameter values.
Graphic describing the Hyperbolastic Type I function with varying parameter values.
Graphic describing the Hyperbolastic Type II function with varying parameter values.
Graphic describing the Hyperbolastic Type II function with varying parameter values.
Graphic describing the Hyperbolastic Type III function with varying parameter values.
Graphic describing the Hyperbolastic cumulative distribution function of type III with varying parameter values.
Graphic describing the Hyperbolastic probability density function of type III with varying parameter values.
百度 经网点进一步了解,原来办理捐赠的是九十高龄的人民大学著名教授方汉奇老先生,陪同的两位女士是相关工作人员。

The hyperbolastic functions, also known as hyperbolastic growth models, are mathematical functions that are used in medical statistical modeling. These models were originally developed to capture the growth dynamics of multicellular tumor spheres, and were introduced in 2005 by Mohammad Tabatabai, David Williams, and Zoran Bursac.[1] The precision of hyperbolastic functions in modeling real world problems is somewhat due to their flexibility in their point of inflection.[1][2] These functions can be used in a wide variety of modeling problems such as tumor growth, stem cell proliferation, pharma kinetics, cancer growth, sigmoid activation function in neural networks, and epidemiological disease progression or regression.[1][3][4]

The hyperbolastic functions can model both growth and decay curves until it reaches carrying capacity. Due to their flexibility, these models have diverse applications in the medical field, with the ability to capture disease progression with an intervening treatment. As the figures indicate, hyperbolastic functions can fit a sigmoidal curve indicating that the slowest rate occurs at the early and late stages.[5] In addition to the presenting sigmoidal shapes, it can also accommodate biphasic situations where medical interventions slow or reverse disease progression; but, when the effect of the treatment vanishes, the disease will begin the second phase of its progression until it reaches its horizontal asymptote.

One of the main characteristics these functions have is that they cannot only fit sigmoidal shapes, but can also model biphasic growth patterns that other classical sigmoidal curves cannot adequately model. This distinguishing feature has advantageous applications in various fields including medicine, biology, economics, engineering, agronomy, and computer aided system theory.[6][7][8][9][10]

Function H1

[edit]

The hyperbolastic rate equation of type I, denoted H1, is given by

where is any real number and is the population size at . The parameter represents carrying capacity, and parameters and jointly represent growth rate. The parameter gives the distance from a symmetric sigmoidal curve. Solving the hyperbolastic rate equation of type I for gives

where is the inverse hyperbolic sine function. If one desires to use the initial condition , then can be expressed as

.

If , then reduces to

.

In the event that a vertical shift is needed to give a better model fit, one can add the shift parameter , which would result in the following formula

.

The hyperbolastic function of type I generalizes the logistic function. If the parameters , then it would become a logistic function. This function is a hyperbolastic function of type I. The standard hyperbolastic function of type I is

.

Function H2

[edit]

The hyperbolastic rate equation of type II, denoted by H2, is defined as

where is the hyperbolic tangent function, is the carrying capacity, and both and jointly determine the growth rate. In addition, the parameter represents acceleration in the time course. Solving the hyperbolastic rate function of type II for gives

.

If one desires to use initial condition then can be expressed as

.

If , then reduces to

.

Similarly, in the event that a vertical shift is needed to give a better fit, one can use the following formula

.

The standard hyperbolastic function of type II is defined as

.

Function H3

[edit]

The hyperbolastic rate equation of type III is denoted by H3 and has the form

,

where > 0. The parameter represents the carrying capacity, and the parameters and jointly determine the growth rate. The parameter represents acceleration of the time scale, while the size of represents distance from a symmetric sigmoidal curve. The solution to the differential equation of type III is

,

with the initial condition we can express as

.

The hyperbolastic distribution of type III is a three-parameter family of continuous probability distributions with scale parameters > 0, and ≥ 0 and parameter as the shape parameter. When the parameter = 0, the hyperbolastic distribution of type III is reduced to the weibull distribution.[11] The hyperbolastic cumulative distribution function of type III is given by

,

and its corresponding probability density function is

.

The hazard function (or failure rate) is given by

The survival function is given by

The standard hyperbolastic cumulative distribution function of type III is defined as

,

and its corresponding probability density function is

.

Properties

[edit]

If one desires to calculate the point where the population reaches a percentage of its carrying capacity , then one can solve the equation

for , where . For instance, the half point can be found by setting .

Applications

[edit]
3D Hyperbolastic graph of phytoplankton biomass as a function of nutrient concentration and time

According to stem cell researchers at McGowan Institute for Regenerative Medicine at the University of Pittsburgh, "a newer model [called the hyperbolastic type III or] H3 is a differential equation that also describes the cell growth. This model allows for much more variation and has been proven to better predict growth."[12]

The hyperbolastic growth models H1, H2, and H3 have been applied to analyze the growth of solid Ehrlich carcinoma using a variety of treatments.[13]

In animal science,[14] the hyperbolastic functions have been used for modeling broiler chicken growth.[15][16] The hyperbolastic model of type III was used to determine the size of the recovering wound.[17]

In the area of wound healing, the hyperbolastic models accurately representing the time course of healing. [18] Such functions have been used to investigate variations in the healing velocity among different kinds of wounds and at different stages in the healing process taking into consideration the areas of trace elements, growth factors, diabetic wounds, and nutrition.[19][20]

Another application of hyperbolastic functions is in the area of the stochastic diffusion process,[21] whose mean function is a hyperbolastic curve. The main characteristics of the process are studied and the maximum likelihood estimation for the parameters of the process is considered.[22] To this end, the firefly metaheuristic optimization algorithm is applied after bounding the parametric space by a stage wise procedure. Some examples based on simulated sample paths and real data illustrate this development. A sample path of a diffusion process models the trajectory of a particle embedded in a flowing fluid and subjected to random displacements due to collisions with other particles, which is called Brownian motion.[23][24][25][26][27] The hyperbolastic function of type III was used to model the proliferation of both adult mesenchymal and embryonic stem cells;[28][29][30][31] and, the hyperbolastic mixed model of type II has been used in modeling cervical cancer data.[32] Hyperbolastic curves can be an important tool in analyzing cellular growth, the fitting of biological curves, the growth of phytoplankton, and instantaneous maturity rate.[33][34][35][36]

In forest ecology and management, the hyperbolastic models have been applied to model the relationship between DBH and height.[37]

The multivariable hyperbolastic model type III has been used to analyze the growth dynamics of phytoplankton taking into consideration the concentration of nutrients.[38]

Hyperbolastic regressions

[edit]
Cumulative Distribution Function of Hyperbolastic Type I, Logistic, and Hyperbolastic Type II
PDF of H1, Logistic, and H2

Hyperbolastic regressions are statistical models that utilize standard hyperbolastic functions to model a dichotomous or multinomial outcome variable. The purpose of hyperbolastic regression is to predict an outcome using a set of explanatory (independent) variables. These types of regressions are routinely used in many areas including medical, public health, dental, biomedical, as well as social, behavioral, and engineering sciences. For instance, binary regression analysis has been used to predict endoscopic lesions in iron deficiency anemia.[39] In addition, binary regression was applied to differentiate between malignant and benign adnexal mass prior to surgery.[40]

The binary hyperbolastic regression of type I

[edit]

Let be a binary outcome variable which can assume one of two mutually exclusive values, success or failure. If we code success as and failure as , then for parameter , the hyperbolastic success probability of type I with a sample of size as a function of parameter and parameter vector given a -dimensional vector of explanatory variables is defined as , where , is given by

.

The odds of success is the ratio of the probability of success to the probability of failure. For binary hyperbolastic regression of type I, the odds of success is denoted by and expressed by the equation

.

The logarithm of is called the logit of binary hyperbolastic regression of type I. The logit transformation is denoted by and can be written as

.

Shannon information for binary hyperbolastic of type I (H1)

[edit]

The Shannon information for the random variable is defined as

where the base of logarithm and . For binary outcome, is equal to .

For the binary hyperbolastic regression of type I, the information is given by

,

where , and is the input data. For a random sample of binary outcomes of size , the average empirical information for hyperbolastic H1 can be estimated by

,

where , and is the input data for the observation.

Information Entropy for hyperbolastic H1

[edit]

Information entropy measures the loss of information in a transmitted message or signal. In machine learning applications, it is the number of bits necessary to transmit a randomly selected event from a probability distribution. For a discrete random variable , the information entropy is defined as

where is the probability mass function for the random variable .

The information entropy is the mathematical expectation of with respect to probability mass function . The Information entropy has many applications in machine learning and artificial intelligence such as classification modeling and decision trees. For the hyperbolastic H1, the entropy is equal to

The estimated average entropy for hyperbolastic H1 is denoted by and is given by

Binary Cross-entropy for hyperbolastic H1

[edit]

The binary cross-entropy compares the observed with the predicted probabilities. The average binary cross-entropy for hyperbolastic H1 is denoted by and is equal to

The binary hyperbolastic regression of type II

[edit]

The hyperbolastic regression of type II is an alternative method for the analysis of binary data with robust properties. For the binary outcome variable , the hyperbolastic success probability of type II is a function of a -dimensional vector of explanatory variables given by

,

For the binary hyperbolastic regression of type II, the odds of success is denoted by and is defined as

The logit transformation is given by

Shannon information for binary hyperbolastic of type II (H2)

[edit]

For the binary hyperbolastic regression H2, the Shannon information is given by

where , and is the input data. For a random sample of binary outcomes of size , the average empirical information for hyperbolastic H2 is estimated by

where , and is the input data for the observation.

Information Entropy for hyperbolastic H2

[edit]

For the hyperbolastic H2, the information entropy is equal to

and the estimated average entropy for hyperbolastic H2 is

Binary Cross-entropy for hyperbolastic H2

[edit]

The average binary cross-entropy for hyperbolastic H2 is

Parameter estimation for the binary hyperbolastic regression of type I and II

[edit]

The estimate of the parameter vector can be obtained by maximizing the log-likelihood function

where is defined according to one of the two types of hyberbolastic functions used.

The multinomial hyperbolastic regression of type I and II

[edit]

The generalization of the binary hyperbolastic regression to multinomial hyperbolastic regression has a response variable for individual with categories (i.e. ). When , this model reduces to a binary hyperbolastic regression. For each , we form indicator variables where

,

meaning that whenever the response is in category and otherwise.

Define parameter vector in a -dimensional Euclidean space and .

Using category 1 as a reference and as its corresponding probability function, the multinomial hyperbolastic regression of type I probabilities are defined as

and for ,

Similarly, for the multinomial hyperbolastic regression of type II we have

and for ,

where with and .

The choice of is dependent on the choice of hyperbolastic H1 or H2.

Shannon Information for multiclass hyperbolastic H1 or H2

[edit]

For the multiclass , the Shannon information is

.

For a random sample of size , the empirical multiclass information can be estimated by

.

Multiclass Entropy in Information Theory

[edit]

For a discrete random variable , the multiclass information entropy is defined as

where is the probability mass function for the multiclass random variable .

For the hyperbolastic H1 or H2, the multiclass entropy is equal to

The estimated average multiclass entropy is equal to

Multiclass Cross-entropy for hyperbolastic H1 or H2

[edit]

Multiclass cross-entropy compares the observed multiclass output with the predicted probabilities. For a random sample of multiclass outcomes of size , the average multiclass cross-entropy for hyperbolastic H1 or H2 can be estimated by

The log-odds of membership in category versus the reference category 1, denoted by , is equal to

where and . The estimated parameter matrix of multinomial hyperbolastic regression is obtained by maximizing the log-likelihood function. The maximum likelihood estimates of the parameter matrix is

References

[edit]
  1. ^ a b c Tabatabai, Mohammad; Williams, David; Bursac, Zoran (2005). "Hyperbolastic growth models: Theory and application". Theoretical Biology and Medical Modelling. 2: 14. doi:10.1186/1742-4682-2-14. PMC 1084364. PMID 15799781.
  2. ^ Himali, L.P.; Xia, Zhiming (2022). "Performance of the Survival models in Socioeconomic Phenomena". Vavuniya Journal of Science. 1 (2): 9–19. doi:10.4038/vjs.v1i2.9. ISSN 2950-7154.
  3. ^ Acton, Q. Ashton (2012). Blood Cells—Advances in Research and Application: 2012 Edition. ScholarlyEditions. ISBN 978-1-4649-9316-9.[page needed]
  4. ^ Wadkin, L. E.; Orozco-Fuentes, S.; Neganova, I.; Lako, M.; Parker, N. G.; Shukurov, A. (2020). "An introduction to the mathematical modelling of iPSCs". Recent Advances in IPSC Technology. 5. arXiv:2010.15493.
  5. ^ Albano, G.; Giorno, V.; Roman-Roman, P.; Torres-Ruiz, F. (2022). "Study of a General Growth Model". Communications in Nonlinear Science and Numerical Simulation. 107. arXiv:2402.00882. Bibcode:2022CNSNS.10706100A. doi:10.1016/j.cnsns.2021.106100.
  6. ^ Neysens, Patricia; Messens, Winy; Gevers, Dirk; Swings, Jean; De Vuyst, Luc (2003). "Biphasic kinetics of growth and bacteriocin production with Lactobacillus amylovorus DCE 471 occur under stress conditions". Microbiology. 149 (4): 1073–1082. doi:10.1099/mic.0.25880-0. PMID 12686649.
  7. ^ Chu, Charlene; Han, Christina; Shimizu, Hiromi; Wong, Bonnie (2002). "The Effect of Fructose, Galactose, and Glucose on the Induction of β-Galactosidase in Escherichia coli" (PDF). Journal of Experimental Microbiology and Immunology. 2: 1–5.
  8. ^ Tabatabai, M. A.; Eby, W. M.; Singh, K. P.; Bae, S. (2013). "T model of growth and its application in systems of tumor-immunedynamics". Mathematical Biosciences and Engineering. 10 (3): 925–938. doi:10.3934/mbe.2013.10.925. PMC 4476034. PMID 23906156.
  9. ^ Parmoon, Ghasem; Moosavi, Seyed; Poshtdar, Adel; Siadat, Seyed (2020). "Effects of cadmium toxicity on sesame seed germination explained by various nonlinear growth models". Oilseeds & Fats Crops and Lipids. 27 (57): 57. doi:10.1051/ocl/2020053.
  10. ^ Kronberger, Gabriel; Kammerer, Lukas; Kommenda, Michael (2020). Computer Aided Systems Theory – EUROCAST 2019. Lecture Notes in Computer Science. Vol. 12013. arXiv:2107.06131. doi:10.1007/978-3-030-45093-9. ISBN 978-3-030-45092-2. S2CID 215791712.
  11. ^ Kamar SH, Msallam BS. Comparative Study between Generalized Maximum Entropy and Bayes Methods to Estimate the Four Parameter Weibull Growth Model. Journal of Probability and Statistics. 2020 Jan 14;2020:1–7.
  12. ^ Roehrs T, Bogdan P, Gharaibeh B, et al. (n.d.). "Proliferative heterogeneity in stem cell populations". Live Cell Imaging Laboratory, McGowan Institute for Regenerative Medicine.
  13. ^ Eby, Wayne M.; Tabatabai, Mohammad A.; Bursac, Zoran (2010). "Hyperbolastic modeling of tumor growth with a combined treatment of iodoacetate and dimethylsulphoxide". BMC Cancer. 10: 509. doi:10.1186/1471-2025-08-059. PMC 2955040. PMID 20863400.
  14. ^ France, James; Kebreab, Ermias, eds. (2008). Mathematical Modelling in Animal Nutrition. Wallingford: CABI. ISBN 9781845933548.
  15. ^ Ahmadi, H.; Mottaghitalab, M. (2007). "Hyperbolastic Models as a New Powerful Tool to Describe Broiler Growth Kinetics". Poultry Science. 86 (11): 2461–2465. doi:10.3382/ps.2007-00086. PMID 17954598.
  16. ^ Tkachuk, S. A.; Pasnichenko, O. S.; Savchok, L. B. (2021). "Approximation of Growth Indicators and Analysis of Individual Growth Curves by Linear Dimensions of Tubular Bones in Chickens of Meat Production Direction During Postnatal Period of Ontogenesis". Ukrainian Journal of Veterinary Sciences. 12 (4). doi:10.31548/ujvs2021.04.002. S2CID 245487460.
  17. ^ Choi, Taeyoung; Chin, Seongah (2014). "Novel Real-Time Facial Wound Recovery Synthesis Using Subsurface Scattering". The Scientific World Journal. 2014: 1–8. doi:10.1155/2014/965036. PMC 4146479. PMID 25197721.
  18. ^ Kiziloz, S.; Ward, E.J.; Hawthorne, D. (2025). "Ti3C2Tx MXene augments osmo-adaptive repression of the inflammatory stress response for improved wound repair". Nanoscale: 1–31. doi:10.1039/d4nr04622f.
  19. ^ Tabatabai, M.A.; Eby, W.M.; Singh, K.P. (2011). "Hyperbolastic modeling of wound healing". Mathematical and Computer Modelling. 53 (5–6): 755–768. doi:10.1016/j.mcm.2010.10.013.
  20. ^ Ko, Ung Hyun; Choi, Jongjin; Choung, Jinseung; Moon, Sunghwan; Shin, Jennifer H. (2019). "Physicochemically Tuned Myofibroblasts for Wound Healing Strategy". Scientific Reports. 9 (1): 16070. Bibcode:2019NatSR...916070K. doi:10.1038/s41598-019-52523-9. PMC 6831678. PMID 31690789.
  21. ^ Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco (2021). "Hyperbolastic Models from a Stochastic Differential Equation Point of View". Mathematics. 9 (16): 1835. doi:10.3390/math9161835.
  22. ^ Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco (2020). "Diffusion Processes for Weibull-Based Models". Computer Aided Systems Theory – EUROCAST 2019. Lecture Notes in Computer Science. Vol. 12013. pp. 204–210. doi:10.1007/978-3-030-45093-9_25. ISBN 978-3-030-45092-2. S2CID 215792096.
  23. ^ Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco (2018). "A hyperbolastic type-I diffusion process: Parameter estimation by means of the firefly algorithm". Biosystems. 163: 11–22. arXiv:2402.03416. Bibcode:2018BiSys.163...11B. doi:10.1016/j.biosystems.2017.11.001. PMID 29129822.
  24. ^ Barrera, Antonio; Román-Roán, Patricia; Torres-Ruiz, Francisco (2020). "Hyperbolastic type-III diffusion process: Obtaining from the generalized Weibull diffusion process". Mathematical Biosciences and Engineering. 17 (1): 814–833. doi:10.3934/mbe.2020043. hdl:10481/58209. PMID 31731379.
  25. ^ Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco (2020). "Two Stochastic Differential Equations for Modeling Oscillabolastic-Type Behavior". Mathematics. 8 (2): 155. doi:10.3390/math8020155. hdl:10481/61054.
  26. ^ Stochastic Processes with Applications. 2019. doi:10.3390/books978-3-03921-729-8. ISBN 978-3-03921-729-8.
  27. ^ Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco (2021). "T-Growth Stochastic Model: Simulation and Inference via Metaheuristic Algorithms". Mathematics. 9 (9): 959. doi:10.3390/math9090959. hdl:10481/68288.
  28. ^ Tabatabai, Mohammad A.; Bursac, Zoran; Eby, Wayne M.; Singh, Karan P. (2011). "Mathematical modeling of stem cell proliferation". Medical & Biological Engineering & Computing. 49 (3): 253–262. doi:10.1007/s11517-010-0686-y. PMID 20953843. S2CID 33828764.
  29. ^ Eby, Wayne M.; Tabatabai, Mohammad A. (2014). "Methods in Mathematical Modeling for Stem Cells". Stem Cells and Cancer Stem Cells, Volume 12. Vol. 12. pp. 201–217. doi:10.1007/978-94-017-8032-2_18. ISBN 978-94-017-8031-5.
  30. ^ Wadkin, L. E.; Orozco-Fuentes, S.; Neganova, I.; Lako, M.; Shukurov, A.; Parker, N. G. (2020). "The recent advances in the mathematical modelling of human pluripotent stem cells". SN Applied Sciences. 2 (2): 276. doi:10.1007/s42452-020-2070-3. PMC 7391994. PMID 32803125.
  31. ^ Stem Cells and Cancer Stem Cells, Volume 12. Vol. 12. 2014. doi:10.1007/978-94-017-8032-2. ISBN 978-94-017-8031-5. S2CID 34446642.
  32. ^ Tabatabai, Mohammad A.; Kengwoung-Keumo, Jean-Jacques; Eby, Wayne M.; Bae, Sejong; Guemmegne, Juliette T.; Manne, Upender; Fouad, Mona; Partridge, Edward E.; Singh, Karan P. (2014). "Disparities in Cervical Cancer Mortality Rates as Determined by the Longitudinal Hyperbolastic Mixed-Effects Type II Model". PLOS ONE. 9 (9): e107242. Bibcode:2014PLoSO...9j7242T. doi:10.1371/journal.pone.0107242. PMC 4167327. PMID 25226583.
  33. ^ Veríssimo, André; Paix?o, Laura; Neves, Ana; Vinga, Susana (2013). "BGFit: Management and automated fitting of biological growth curves". BMC Bioinformatics. 14: 283. doi:10.1186/1471-2025-08-053. PMC 3848918. PMID 24067087.
  34. ^ Tabatabai, M. A.; Eby, W. M.; Bae, S.; Singh, K. P. (2013). "A flexible multivariable model for Phytoplankton growth". Mathematical Biosciences and Engineering. 10 (3): 913–923. doi:10.3934/mbe.2013.10.913. PMID 23906155.
  35. ^ Yeasmin, Farhana; Daw, Ranadeep; Chakraborty, Bratati (2021). "A New Growth Rate Measure in Identifying Extended Gompertz Growth Curve and Development of Goodness-of-fit Test". Calcutta Statistical Association Bulletin. 73 (2): 127–145. doi:10.1177/00080683211037203.
  36. ^ Arif, Samiur (2014). Modeling Stem Cell Population Dynamics (Thesis). Old Dominion University. doi:10.25777/thnx-6q07.
  37. ^ Eby, Wayne M.; Oyamakin, Samuel O.; Chukwu, Angela U. (2017). "A new nonlinear model applied to the height-DBH relationship in Gmelina arborea". Forest Ecology and Management. 397: 139–149. Bibcode:2017ForEM.397..139E. doi:10.1016/j.foreco.2017.04.015.
  38. ^ Tabatabai, M. A.; Eby, W. M.; Bae, S.; Singh, K. P. (2013). "A flexible multivariable model for Phytoplankton growth". Mathematical Biosciences and Engineering. 10 (3): 913–923. doi:10.3934/mbe.2013.10.913. PMID 23906155.
  39. ^ Majid, Shahid; Salih, Mohammad; Wasaya, Rozina; Jafri, Wasim (2008). "Predictors of gastrointestinal lesions on endoscopy in iron deficiency anemia without gastrointestinal symptoms". BMC Gastroenterology. 8: 52. doi:10.1186/1471-230X-8-52. PMC 2613391. PMID 18992171.
  40. ^ Timmerman, Dirk; Testa, Antonia C.; Bourne, Tom; Ferrazzi, Enrico; Ameye, Lieveke; Konstantinovic, Maja L.; Van Calster, Ben; Collins, William P.; Vergote, Ignace; Van Huffel, Sabine; Valentin, Lil (2005). "Logistic Regression Model to Distinguish Between the Benign and Malignant Adnexal Mass Before Surgery: A Multicenter Study by the International Ovarian Tumor Analysis Group". Journal of Clinical Oncology. 23 (34): 8794–8801. doi:10.1200/JCO.2005.01.7632. PMID 16314639.
虎的本命佛是什么佛 减肥期间吃什么水果好 自汗恶风是什么意思 葛优躺是什么意思 又什么又什么的草地
耳廓有痣代表什么 单身公寓是什么意思 急性结肠炎什么症状 蝙蝠属于什么类动物 扁平疣用什么药膏除根
2月什么星座的 castle是什么意思 肚脐眼下方是什么器官 七月半是什么节日 甘蔗什么时候成熟
五行火生什么克什么 尿囊素是什么 黑色鸟是什么鸟 鬼是什么意思 什么什么一什么
情绪价值是什么意思hcv7jop9ns0r.cn 藜芦是什么东西hcv9jop6ns6r.cn 为什么肚子总是胀胀的hcv7jop9ns0r.cn 不以规矩下一句是什么hcv9jop0ns2r.cn 什么红什么赤hcv8jop6ns2r.cn
皂矾是什么hcv7jop7ns4r.cn 阳痿吃什么hcv8jop3ns2r.cn 芒果与什么不能一起吃hcv8jop0ns8r.cn 11月11是什么星座hcv7jop9ns7r.cn 接济是什么意思aiwuzhiyu.com
五级士官是什么级别hcv7jop4ns6r.cn 蚯蚓是什么动物hcv8jop4ns6r.cn 人为什么要喝酒hcv9jop8ns1r.cn 月经褐色量少是什么原因hcv8jop6ns4r.cn 白发用什么染发最安全jinxinzhichuang.com
血清蛋白是什么hcv8jop1ns7r.cn 鼻子痒用什么药hcv8jop6ns0r.cn 低头什么节hcv8jop3ns8r.cn 吃什么改善睡眠hcv9jop5ns3r.cn 双氧奶是什么cl108k.com
百度