西双版纳有什么好玩的| 清酒和白酒有什么区别| 白细胞数目偏高是什么意思| 肺在五行中属什么| 水有什么作用| 暴跳如雷是什么意思| 乙肝病毒核心抗体阳性是什么意思| 健身吃什么长肌肉最快| 内衣为什么会发霉| 肉字是什么结构| 立冬和冬至什么区别| 虎落平阳被犬欺是什么生肖| 稷是什么农作物| 手足口是什么| 低血糖吃什么糖| 1992年是什么年| 林黛玉属什么生肖| bu什么颜色| 载脂蛋白a1偏高是什么原因| 什么样的轮子只转不走| 靠谱是什么意思| 高压高是什么原因| 滑石粉有什么作用| 风热感冒用什么药好| 刮宫是什么意思| 1950属什么生肖| 女生做彩超是检查什么| 来月经吃什么| 免疫组织化学染色诊断是什么| 甲状腺手术后有什么后遗症| 阴吹是什么| 什么品牌的书包质量好| et什么意思| 观音菩萨是保佑什么的| 菊花可以和什么一起泡水喝| 为什么大便拉不出来| 便秘吃什么最快排便| 阿胶什么时候吃效果最好| 绿茶什么时候喝最好| 什么是m属性| 痱子粉和爽身粉有什么区别| 嗜睡是什么病的前兆| 尿酸高什么不能吃| 挑刺是什么意思| 太白金星叫什么| 熬中药用什么锅| 卖关子是什么意思| 水痘是什么病毒| 什锦菜是什么菜| 早上起来心慌是什么原因| 代沟是什么| 小孩尿酸高是什么原因| 蜈蚣最怕什么药| 人为什么要工作| 舌质是什么| 降血脂吃什么药| 月经提前十几天是什么原因| 舌苔厚发白是什么原因| 为什么要做微信营销| 闺蜜生日送什么礼物好| 孤儿是什么意思| 脾胃不好吃什么药好| 一岁半宝宝反复发烧是什么原因| 痛风吃什么最好| 2008年属鼠是什么命| 感叹号像什么| 银子发黄是什么原因| 嘴唇红肿是什么原因| EXP什么意思| 全血是什么意思| 花花世界不必当真是什么歌| 怨念是什么意思| 百无一用是什么意思| 澳门什么时候回归| 单号是什么| 耳鸣是什么意思| 宝宝干咳嗽是什么原因| 望尘莫及的及是什么意思| 假性宫缩是什么感觉| 大脚趾外翻是什么原因| 每天吃维生素c有什么好处| 海藻是什么植物| 一倍是什么意思| 生辰八字查五行缺什么| 李小龙属什么生肖| 走路脚后跟疼是什么原因| 海王星是什么颜色| 去湿气吃什么食物| 瞌睡多是什么原因| 吃了兔子肉不能吃什么| 天象是什么意思| 吃什么能降低尿蛋白| 尿不干净有余尿是什么原因| 孩子晚上睡觉磨牙是什么原因| 什么叫物理| 弯刀裤适合什么人穿| 胃火重口臭吃什么药好| 蝉吃什么东西| 急性扁桃体炎吃什么药| 凉粉是什么原料做的| 炒熟的黑豆有什么功效| 新生儿睡觉突然大哭是什么原因| 收缩压和舒张压是什么意思| 白砂糖和冰糖有什么区别| 甲状腺是什么引起的原因| 专业术语是什么意思| 高炮是什么| 做胃镜挂什么科| 跑马了是什么意思| 大口鱼是什么鱼| 晚上睡不着觉什么原因| 阴是什么生肖| 卓诗尼牌子是什么档次| 提刑官相当于现在什么官| 梦见杀猪是什么意思| 什么是穿刺手术| 密度单位是什么| 子宫粘连是什么原因造成的| 剖腹产后可以吃什么水果| 西葫芦炒什么好吃| 无条件是什么意思| 什么是黑茶| 腰肌劳损挂什么科| coach什么意思| 不打狂犬疫苗会有什么后果| 哮喘用什么药| 五月一号什么星座| 弥月之喜是什么意思| 特殊门诊是什么意思| 湿疹有什么忌口的食物| 蛋白肉是什么东西做的| 测子女缘什么时候到来| 红红火火是什么生肖| 头出汗多至头发湿透是什么原因| 梦到涨大水预示着什么| 血糖高适合喝什么汤| 男生属鸡和什么属相配| 屈光不正是什么意思| 韭菜不能和什么一起吃| 肠粘连有什么症状| 血酮体高代表什么| 脚踩按摩垫有什么好处| 乌龟不吃食是什么原因| 常青藤是什么意思| 血糖高适合吃什么蔬菜| 辅助治疗是什么意思| 贝字旁的字和什么有关| 慢性萎缩性胃炎c2是什么意思| 磁共振和核磁共振有什么区别| 秦始皇的名字叫什么| 为什么肛门会出血| 属鸡和什么属相相克| 什么的白云| 瑜伽是什么意思| 脖子上长小肉粒是什么| 水瓶座的幸运色是什么| 胃寒能吃什么水果| 丝光棉是什么面料| 色令智昏是什么意思| 月忌日是什么意思| 查血压高挂什么科室| 什么西瓜| 一个黑一个俊的右边念什么| 矿物油是什么| 低血糖是什么症状| 茶寿为什么是108岁| 凤凰单枞是什么茶| 什么时候受孕率最高| complete是什么意思| 马拉松起源与什么有关| 来例假头晕是什么原因| 左肾肾盂分离什么意思| 泓五行属什么| 小熊是什么牌子| ade是什么意思| 6月27号是什么星座| 破关是什么意思| 掌纹多而乱代表什么| 火加良念什么| 什么是干燥综合症| 天天洗头发有什么危害| 为什么会长痘| 有恙是什么意思| 阿玛尼是什么意思| 传染病八项挂什么科| 促甲状腺激素高是什么原因| 舌苔厚是什么原因| 一什么小狗| 双肺结节是什么病| 尿隐血弱阳性什么意思| 4月27日是什么星座| 蜱虫用什么药消灭| 胃隐隐作痛吃什么药| 生源是什么意思| 眼睛干涩有异物感用什么眼药水| 头孢是治疗什么病的| 什么好| 总流鼻血是什么原因| 吃钙片有什么好处| 什么原因导致性功能减退| 吃中药能吃什么水果| 正局级是什么级别| 腱鞘囊肿挂什么科| 什么人容易得阿尔兹海默症| 膛目结舌是什么意思| 厕所里应该摆什么花| 慢性萎缩性胃炎伴糜烂吃什么药| 正装是什么样的衣服| 大便为什么是黑色的是什么原因| 直肠肿瘤手术后吃什么| 小三阳吃什么药能转阴| 转移灶是什么意思| 飓风什么意思| 肝硬化失代偿期是什么意思| 脚热是什么原因引起的| 血色病是什么病| 下腹坠胀是什么原因| 小资生活是什么意思| 身份证后面有个x是什么意思| 618什么星座| 额头青筋凸起是什么原因| 低血压平时要注意什么| 旺盛是什么意思| 吃什么最补胶原蛋白| 奇葩什么意思| 结肠炎吃什么药效果最好| 天上的云朵像什么| 薄荷叶有什么功效| 倒挂金钩什么意思| ctp是什么| 花生吃多了有什么坏处| 舒张压和收缩压是什么| 骨折一个月能恢复到什么程度| 脱发缺什么维生素| 3.15什么星座| 路演是什么意思| 大排畸是什么检查| 哺乳期抽烟对宝宝有什么影响| 什么是固态法白酒| 狐媚子是什么意思| 贝字旁的字和什么有关| vps是什么| 胃穿孔是什么原因引起的| 炸东西用什么淀粉| 戾气是什么| poems综合征是什么病| 鲁肃是一个什么样的人| 骨盐量偏高代表什么| 什么地眨眼| 吃什么食物快速降糖| 整改是什么意思| 考试前吃什么提神醒脑| 怀孕16周要做什么检查| 什么是邪教| 黄精有什么作用| 孩子晚上磨牙是什么原因| 抽烟是什么感觉| 甲状腺欠均匀什么意思| 乳腺结节和乳腺增生有什么区别| 文房四宝是什么| 9月9号是什么星座| 鬼子红药店里叫什么药| 痰中带血吃什么药| 月子餐吃什么| 百度Jump to content

芬兰荣登孤独星球2017年全球最佳旅游目的地榜单

From Wikipedia, the free encyclopedia
Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color.
百度 相比于威尔士队而言,捷克队虽然在国际上的排名不及前者,但却同样在国足之上,为此中国队又必须端正态度,迎接来自强于自己的捷克队的较量。

In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation. It is usually applied to functions sampled on a 2D rectilinear grid, though it can be generalized to functions defined on the vertices of (a mesh of) arbitrary convex quadrilaterals.

Bilinear interpolation is performed using linear interpolation first in one direction, and then again in another direction. Although each step is linear in the sampled values and in the position, the interpolation as a whole is not linear but rather quadratic in the sample location.

Bilinear interpolation is one of the basic resampling techniques in computer vision and image processing, where it is also called bilinear filtering or bilinear texture mapping.

Computation

[edit]
The four red dots show the data points and the green dot is the point at which we want to interpolate.

Suppose that we want to find the value of the unknown function f at the point (x, y). It is assumed that we know the value of f at the four points Q11 = (x1y1), Q12 = (x1y2), Q21 = (x2y1), and Q22 = (x2y2).

Repeated linear interpolation

[edit]

We first do linear interpolation in the x-direction. This yields

We proceed by interpolating in the y-direction to obtain the desired estimate:

Note that we will arrive at the same result if the interpolation is done first along the y direction and then along the x direction.[1]

Polynomial fit

[edit]

An alternative way is to write the solution to the interpolation problem as a multilinear polynomial

where the coefficients are found by solving the linear system

yielding the result

Weighted mean

[edit]
A geometric visualisation of bilinear interpolation. The product of the value at the desired point (black) and the entire area is equal to the sum of the products of the value at each corner and the partial area diagonally opposite the corner (corresponding colours).

The solution can also be written as a weighted mean of the f(Q):

where the weights sum to 1 and satisfy the transposed linear system

yielding the result

which simplifies to

in agreement with the result obtained by repeated linear interpolation. The set of weights can also be interpreted as a set of generalized barycentric coordinates for a rectangle.

Alternative matrix form

[edit]

Combining the above, we have

On the unit square

[edit]

If we choose a coordinate system in which the four points where f is known are (0, 0), (0, 1), (1, 0), and (1, 1), then the interpolation formula simplifies to

or equivalently, in matrix operations:

Here we also recognize the weights:

Alternatively, the interpolant on the unit square can be written as

where

In both cases, the number of constants (four) correspond to the number of data points where f is given.

Properties

[edit]
Comparison of Bilinear interpolation with some 1- and 2-dimensional interpolations.
Black and red/yellow/green/blue dots correspond to the interpolated point and neighbouring samples, respectively.
Their heights above the ground correspond to their values.

As the name suggests, the bilinear interpolant is not linear; but it is linear (i.e. affine) along lines parallel to either the x or the y direction, equivalently if x or y is held constant. Along any other straight line, the interpolant is quadratic. Even though the interpolation is not linear in the position (x and y), at a fixed point it is linear in the interpolation values, as can be seen in the (matrix) equations above.

The result of bilinear interpolation is independent of which axis is interpolated first and which second. If we had first performed the linear interpolation in the y direction and then in the x direction, the resulting approximation would be the same.

The interpolant is a bilinear polynomial, which is also a harmonic function satisfying Laplace's equation. Its graph is a bilinear Bézier surface patch.

Inverse and generalization

[edit]

In general, the interpolant will assume any value (in the convex hull of the vertex values) at an infinite number of points (forming branches of hyperbolas[2]), so the interpolation is not invertible.

However, when bilinear interpolation is applied to two functions simultaneously, such as when interpolating a vector field, then the interpolation is invertible (under certain conditions). In particular, this inverse can be used to find the "unit square coordinates" of a point inside any convex quadrilateral (by considering the coordinates of the quadrilateral as a vector field which is bilinearly interpolated on the unit square). Using this procedure bilinear interpolation can be extended to any convex quadrilateral, though the computation is significantly more complicated if it is not a parallelogram.[3] The resulting map between quadrilaterals is known as a bilinear transformation, bilinear warp or bilinear distortion.

Alternatively, a projective mapping between a quadrilateral and the unit square may be used, but the resulting interpolant will not be bilinear.

In the special case when the quadrilateral is a parallelogram, a linear mapping to the unit square exists and the generalization follows easily.

The obvious extension of bilinear interpolation to three dimensions is called trilinear interpolation.

Inverse computation

Let be a vector field that is bilinearly interpolated on the unit square parameterized by . Inverting the interpolation requires solving a system of two bilinear polynomial equations:where Taking a 2-d cross product (see Grassman product) of the system with a carefully chosen vectors allows us to eliminate terms:which expands towhereThe quadratic equations can be solved using the quadratic formula. We have the equivalent determinants and the solutions(opposite signs are enforced by the linear relation). The cases when or must be handled separately. Given the right conditions, one of the two solutions should be in the unit square.

Application in image processing

[edit]

In computer vision and image processing, bilinear interpolation is used to resample images and textures. An algorithm is used to map a screen pixel location to a corresponding point on the texture map. A weighted average of the attributes (color, transparency, etc.) of the four surrounding texels is computed and applied to the screen pixel. This process is repeated for each pixel forming the object being textured.[4]

When an image needs to be scaled up, each pixel of the original image needs to be moved in a certain direction based on the scale constant. However, when scaling up an image by a non-integral scale factor, there are pixels (i.e., holes) that are not assigned appropriate pixel values. In this case, those holes should be assigned appropriate RGB or grayscale values so that the output image does not have non-valued pixels.

Bilinear interpolation can be used where perfect image transformation with pixel matching is impossible, so that one can calculate and assign appropriate intensity values to pixels. Unlike other interpolation techniques such as nearest-neighbor interpolation and bicubic interpolation, bilinear interpolation uses values of only the 4 nearest pixels, located in diagonal directions from a given pixel, in order to find the appropriate color intensity values of that pixel.

Bilinear interpolation considers the closest 2 × 2 neighborhood of known pixel values surrounding the unknown pixel's computed location. It then takes a weighted average of these 4 pixels to arrive at its final, interpolated value.[5][6]

Bilinear interpolation
Example of bilinear interpolation in grayscale values

Example

[edit]

As seen in the example on the right, the intensity value at the pixel computed to be at row 20.2, column 14.5 can be calculated by first linearly interpolating between the values at column 14 and 15 on each rows 20 and 21, giving

and then interpolating linearly between these values, giving

This algorithm reduces some of the visual distortion caused by resizing an image to a non-integral zoom factor, as opposed to nearest-neighbor interpolation, which will make some pixels appear larger than others in the resized image.

A simplification of terms

[edit]

This example is of tabularised pressure (columns) vs temperature (rows) data as a lookup against some variable:

The following standard calculation by parts has 27 operations:

The above has several repeated operations, e.g., , , , , as well as some ratios. These repetitions can be assigned temporary variables whilst computing a single interpolation, which will reduce the number of operations to 19.

This can all be simplified from the initial 19 individual operations to 17 individual operations as such:

Simplification of terms is good practice for application of mathematical methodology to engineering applications and can reduce computational and energy requirements for a process.[citation needed]

See also

[edit]

References

[edit]
  1. ^ Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (1992). Numerical recipes in C: the art of scientific computing (2nd ed.). New York, NY, USA: Cambridge University Press. pp. 123-128. ISBN 0-521-43108-5.
  2. ^ Monasse, Pascal (2025-08-14). "Extraction of the Level Lines of a Bilinear Image". Image Processing on Line. 9: 205–219. doi:10.5201/ipol.2019.269. ISSN 2105-1232.
  3. ^ Quilez, Inigo (2010). "Inverse bilinear interpolation". iquilezles.org. Archived from the original on 2025-08-14. Retrieved 2025-08-14.
  4. ^ Bilinear interpolation definition (popular article on www.pcmag.com.
  5. ^ Khosravi, M. R. (2025-08-14). "BL-ALM: A Blind Scalable Edge-Guided Reconstruction Filter for Smart Environmental Monitoring Through Green IoMT-UAV Networks". IEEE Transactions on Green Communications and Networking. 5 (2): 727–736. doi:10.1109/TGCN.2021.3067555. S2CID 233669511.
  6. ^ "Web tutorial: Digital Image Interpolation".
西药是用什么材料做的 胆红素升高是什么原因 菊花茶有什么功效 乳腺疼挂什么科 腱鞘是什么
字读什么 霉菌阴道炎是什么引起的 吃什么水果对身体好 啮齿类动物什么意思 5月23日是什么日子
梦到前女友征兆是什么 查胆囊挂什么科 扁桃体发炎严重吃什么药好得快 0代表什么意思 女性尿路感染是什么原因造成的
银杯子喝水有什么好处 胸腔积液叩诊什么音 400能上什么大学 水杯什么材质好 做小月子要注意什么
3月3日什么星座hcv8jop6ns7r.cn 吃什么降血脂最好hcv9jop1ns1r.cn 治疗狐臭挂什么科hcv9jop5ns7r.cn 侯字五行属什么hcv9jop6ns2r.cn 爱而不得是什么意思hcv9jop4ns3r.cn
怠工是什么意思hcv9jop6ns9r.cn 布五行属什么hcv8jop5ns4r.cn 滴虫性阴道炎用什么药好hcv8jop8ns0r.cn 美的不可方物什么意思hcv8jop2ns1r.cn 雪里红是什么youbangsi.com
个子矮吃什么才能长高hcv8jop3ns4r.cn 莲子和什么搭配最好hcv9jop1ns3r.cn 9月21号是什么星座hcv9jop3ns7r.cn 眉毛有什么作用hcv9jop5ns8r.cn 平板电脑与笔记本电脑有什么区别hcv8jop9ns3r.cn
脍炙人口什么意思hcv9jop2ns8r.cn 身上长红点是什么原因hcv9jop4ns3r.cn 一天两包烟会导致什么后果imcecn.com 乔治阿玛尼和阿玛尼有什么区别hcv8jop2ns0r.cn 现在有什么水果hcv9jop5ns1r.cn
百度