酸枣仁配什么治疗失眠| 慢阻肺是什么意思| 感冒了能吃什么水果| 十月份什么星座| 历程是什么意思| 浮生若梦是什么意思| 支原体培养阳性是什么意思| 男士阴囊湿疹用什么药膏| 心电图逆钟向转位是什么意思| 玄乎是什么意思| 西楼是什么意思| 肌肉萎缩是什么原因| 老铁是什么意思| 什么东西软化鱼刺最快| 康膜的功效是什么| 音叉是什么| 伊犁在新疆什么位置| 肛裂是什么症状| 血红蛋白偏高说明了什么| 鳗鱼是什么鱼| 谷丙转氨酶偏高吃什么药| 宫颈出血是什么症状| 棱角是什么意思| 金字旁的字与什么有关| 什么是尿酸| 筝是什么意思| 合子是什么| 胰腺挂什么科| 戒烟有什么好处| 王八蛋是什么意思| 826是什么意思| egg是什么意思| 与世无争是什么意思| 羊毛疔是什么病| 幼儿牙齿黑是什么原因| 泪囊炎用什么眼药水| 四大发明是什么| 中筋面粉是什么粉| 女性膀胱炎是什么症状| 食道肿瘤有什么症状| 治疗舌苔白厚用什么药| 月经期间吃什么最好| 边界欠清是什么意思| 梦见老宅是什么意思| 佩戴朱砂有什么好处| 属兔生什么属相宝宝好| 皮革是什么材质| 戊戌是什么意思| 一什么红枣| 为什么会有台风| spoRT是什么| 亨廷顿舞蹈症是什么病| 刘欢属什么生肖| 星五行属性是什么| 吃什么可以补精| 长脓包是什么原因| 阴道长什么样| 银杏是什么植物| 吹牛皮是什么意思| 什么仗人势| 前列腺是什么病| 二脚趾比大脚趾长代表什么| 智齿不拔有什么危害| 护理假是什么意思| 蜜蜂的天敌是什么| 桑叶有什么功效和作用| 和田玉对身体有什么好处| 运动后体重增加是什么原因| 绾色是什么颜色| 腰两侧疼痛是什么原因| 世故是什么意思| skp什么意思| 影像是什么意思| 十二年义务教育什么时候实行| 腿没有劲是什么原因| 九里香什么时候开花| 肝内脂肪浸润是什么意思| 低筋面粉能做什么| 农历六月初三是什么星座| 去胎毒吃什么最好| 伏地魔是什么意思| 彷徨是什么意思| 长一根白眉毛预示什么| 得糖尿病的原因是什么| 膳食纤维有什么作用| 三观是什么| 绿色大便是什么原因| 唇炎属于什么科| 十月十号是什么星座| 割包皮有什么影响| 什么菜下饭又好吃| 吃阿司匹林有什么副作用| 吃芒果过敏是什么症状| 热得什么填空| 戾什么意思| 做梦梦见老婆出轨是什么意思| 腹部ct能检查出什么| 手发抖是什么病的先兆| 鱼跳出鱼缸有什么征兆| 仙人掌煎鸡蛋治什么病| 湿毒吃什么药最有效| 乙肝表面抗体阴性是什么意思| 头孢吃多了有什么副作用| 尿频尿急尿不尽吃什么药| 做完无痛人流需要注意什么| 42天产后检查挂什么科| 聪明的近义词是什么| 化疗后恶心呕吐吃什么可以缓解| 纳入是什么意思| 泸州老窖是什么香型| 乳腺钙化是什么意思啊| 身体缺钾会有什么症状| 唐筛主要检查什么| 牛蛋是什么| 脱发吃什么药| 毫无意义是什么意思| hp阳性是什么意思| 话费为什么扣那么快| 人中长代表什么| 大理有什么好玩的| 什么是士官| 什么是黑色素肿瘤| ca125检查是什么意思| 用红笔写名字代表什么| 过梁是什么| 卵巢结节是什么意思| 吴承恩是什么朝代的| 滴虫是什么| rbc是什么意思医学| 红茶是什么茶| mys是什么意思| 毛巾为什么会臭| 肚子为什么胀气| 买什么样的老花镜好| 吃什么水果容易排便| 为什么会得肺结核| peek是什么材质| 印度为什么用手吃饭| 什么是双修| 郑州有什么好玩的景点| 胃低分化腺癌是什么意思| 情妇是什么意思| 熠五行属什么| 猪肝炒什么| 冉冉是什么意思| 什么是环境影响评价| 女人吃火龙果有什么好处| 有机会是什么意思| 锦纹是什么中药| 腾云驾雾是什么生肖| 氨纶丝是什么面料| fpd是什么意思| 一什么房| 通五行属什么| 住院预交金是什么意思| 魔术贴是什么| 芋圆是什么做的| 小孩口腔溃疡是什么原因| 眩晕去医院挂什么科室| 烟草是什么植物| 成人礼送什么礼物| 大血小板比率偏高是什么原因| 喝小分子肽有什么好处| 检查食道挂什么科| 腹股沟疝气挂什么科| plory是什么牌子| 湿疹用什么药膏好| 胃炎是什么原因引起的| 馐什么意思| 02年的属什么| 肾炎的饮食应注意什么| 睾酮素低了有什么症状| 慢性非萎缩性胃炎是什么意思| 细菌性痢疾症状是什么| 天方夜谭是什么生肖| 脾围是什么意思| 包茎挂什么科| 为什么刚吃完饭不能洗澡| 心急如焚是什么意思| 4.23是什么星座| 肠炎有什么症状表现| 一什么湖水| 加尿素起什么作用| 痛经什么感觉| 肾积水有什么症状| 长期抽烟清肺喝什么茶| 上不来气吃什么药好使| 乳腺囊肿吃什么药| 1927年属什么| 右眼皮跳是什么预兆| 喝酒伤什么器官| 老年人腿疼是什么原因引起的| 鬼门关是什么意思| 肾病可以吃什么水果| 4月11号是什么星座| ic是什么意思| 是什么品牌| 威海的海是什么海| 在家做什么小生意| oppo最新款是什么型号| 成都机场叫什么名字| 83年属什么| 胎膜早破是什么症状| 将至是什么意思| 什么是孽缘| 打豆浆用什么豆子| 白虎痣是什么意思| 种牙是什么意思| amiri是什么牌子| 历法是什么意思| 难以入睡是什么原因引起的| 黄芪喝多了有什么副作用| 张信哲属什么生肖| 阑尾在什么位置| 心肌缺血什么症状| 清炖鸡汤放什么调料| 天蝎座的幸运色是什么| 音什么笑什么成语| 用减一笔是什么字| 血小板低有什么危险| 1990年属马的是什么命| 露酒是什么意思| 什么叫流年| 胎停是什么意思| 八字华盖是什么意思| 喉咙干是什么原因| 院士相当于什么级别| 女用避孕套是什么样的| 虐心是什么意思| 黄皮肤适合什么颜色的衣服| 静脉炎吃什么药| 梅核气有什么症状| vivo是什么牌子| 梦见租房子住是什么意思| 子宫肌瘤变性是什么意思| 豆皮炒什么好吃| 右束支传导阻滞是什么病| 吃饱了胃胀是什么原因| 缺钾吃什么食物补得最快| 得了便宜还卖乖是什么意思| 广东属于什么气候| 碧色是什么颜色| 县公安局局长什么级别| kms是什么药| 对什么都不感兴趣| 百事可乐和可口可乐有什么区别| 痱子长什么样子图片| 龟吃什么食物| 请婚假需要什么材料| 一什么云彩| 痔疮不治会有什么危害| 柳絮吃了有什么好处| 但爱鲈鱼美的但是什么意思| 补办结婚证需要什么手续| 闹觉是什么意思| 7月25是什么星座| 什么样才是包皮| 为什么胸会痒| 爱情是个什么东西| 骨加客读什么| 吃瓜是什么意思| 卵泡是什么意思| 扌字旁的字和什么有关| 孕妇为什么那么怕热| 百度Jump to content

江南--浙江频道--人民网

From Wikipedia, the free encyclopedia
(Redirected from Modulo operation)
百度 2017年,致公党中央联合外交部、科技部、教育部、文化部等多部委,以及致公党党内专家学者,开展了“推进‘一带一路’建设中中国文化走出去”重点调研。

In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the modulus of the operation.

Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.[1]

For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0.

Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands. The range of values for an integer modulo operation of n is 0 to n ? 1. a mod 1 is always 0.

When exactly one of a or n is negative, the basic definition breaks down, and programming languages differ in how these values are defined.

Variants of the definition

[edit]

In mathematics, the result of the modulo operation is an equivalence class, and any member of the class may be chosen as representative; however, the usual representative is the least positive residue, the smallest non-negative integer that belongs to that class (i.e., the remainder of the Euclidean division).[2] However, other conventions are possible. Computers and calculators have various ways of storing and representing numbers; thus their definition of the modulo operation depends on the programming language or the underlying hardware.

In nearly all computing systems, the quotient q and the remainder r of a divided by satisfy the following conditions:

This still leaves a sign ambiguity if the remainder is non-zero: two possible choices for the remainder occur, one negative and the other positive; that choice determines which of the two consecutive quotients must be used to satisfy equation (1). In number theory, the positive remainder is always chosen, but in computing, programming languages choose depending on the language and the signs of a or n.[a] Standard Pascal and ALGOL 68, for example, give a positive remainder (or 0) even for negative divisors, and some programming languages, such as C90, leave it to the implementation when either of n or a is negative (see the table under § In programming languages for details). Some systems leave a modulo 0 undefined, though others define it as a.

  •   Quotient (q) and   remainder (r) as functions of dividend (a), using truncated division

    Many implementations use truncated division, for which the quotient is defined by

    where is the integral part function (rounding toward zero), i.e. the truncation to zero significant digits. Thus according to equation (1), the remainder has the same sign as the dividend a so can take 2|n| ? 1 values:

  • Quotient and remainder using floored division

    Donald Knuth[3] promotes floored division, for which the quotient is defined by

    where is the floor function (rounding down). Thus according to equation (1), the remainder has the same sign as the divisor n:

  • Quotient and remainder using Euclidean division

    Raymond T. Boute[4] promotes Euclidean division, for which the non-negative remainder is defined by

    . (Emphasis added.)

    Under this definition, we can say the following about the quotient :

    where sgn is the sign function, is the floor function (rounding down), and are rational numbers.

    Equivalently, one may instead define the quotient as follows:

    where is the ceiling function (rounding up). Thus according to equation (1), the remainder is non-negative:

  • Quotient and remainder using rounded division

    Common Lisp and IEEE 754 use rounded division, for which the quotient is defined by

    where round is the round function (rounding half to even). Thus according to equation (1), the remainder falls between and , and its sign depends on which side of zero it falls to be within these boundaries:

  • Quotient and remainder using ceiling division

    Common Lisp also uses ceiling division, for which the quotient is defined by

    where ?? is the ceiling function (rounding up). Thus according to equation (1), the remainder has the opposite sign of that of the divisor:

If both the dividend and divisor are positive, then the truncated, floored, and Euclidean definitions agree. If the dividend is positive and the divisor is negative, then the truncated and Euclidean definitions agree. If the dividend is negative and the divisor is positive, then the floored and Euclidean definitions agree. If both the dividend and divisor are negative, then the truncated and floored definitions agree.

However, truncated division satisfies the identity .[5][6]

Notation

[edit]

Some calculators have a mod() function button, and many programming languages have a similar function, expressed as mod(a, n), for example. Some also support expressions that use "%", "mod", or "Mod" as a modulo or remainder operator, such as a % n or a mod n.

For environments lacking a similar function, any of the three definitions above can be used.

Common pitfalls

[edit]

When the result of a modulo operation has the sign of the dividend (truncated definition), it can lead to surprising mistakes.

For example, to test if an integer is odd, one might be inclined to test if the remainder by 2 is equal to 1:

bool is_odd(int n) {
    return n % 2 == 1;
}

But in a language where modulo has the sign of the dividend, that is incorrect, because when n (the dividend) is negative and odd, n mod 2 returns ?1, and the function returns false.

One correct alternative is to test that the remainder is not 0 (because remainder 0 is the same regardless of the signs):

bool is_odd(int n) {
    return n % 2 != 0;
}

Or with the binary arithmetic:

bool is_odd(int n) {
    return n & 1;
}

Performance issues

[edit]

Modulo operations might be implemented such that a division with a remainder is calculated each time. For special cases, on some hardware, faster alternatives exist. For example, the modulo of powers of 2 can alternatively be expressed as a bitwise AND operation (assuming x is a positive integer, or using a non-truncating definition):

x % 2n == x & (2n - 1)

Examples:

x % 2 == x & 1
x % 4 == x & 3
x % 8 == x & 7

In devices and software that implement bitwise operations more efficiently than modulo, these alternative forms can result in faster calculations.[7]

Compiler optimizations may recognize expressions of the form expression % constant where constant is a power of two and automatically implement them as expression & (constant-1), allowing the programmer to write clearer code without compromising performance. This simple optimization is not possible for languages in which the result of the modulo operation has the sign of the dividend (including C), unless the dividend is of an unsigned integer type. This is because, if the dividend is negative, the modulo will be negative, whereas expression & (constant-1) will always be positive. For these languages, the equivalence x % 2n == x < 0 ? x | ~(2n - 1) : x & (2n - 1) has to be used instead, expressed using bitwise OR, NOT and AND operations.

Optimizations for general constant-modulus operations also exist by calculating the division first using the constant-divisor optimization.

Properties (identities)

[edit]

Some modulo operations can be factored or expanded similarly to other mathematical operations. This may be useful in cryptography proofs, such as the Diffie–Hellman key exchange. The properties involving multiplication, division, and exponentiation generally require that a and n are integers.

  • Identity:
  • Inverse:
  • Distributive:
    • (a + b) mod n = [(a mod n) + (b mod n)] mod n.
    • ab mod n = [(a mod n)(b mod n)] mod n.
  • Division (definition): ?a/b? mod n = [(a mod n)(b?1 mod n)] mod n, when the right hand side is defined (that is when b and n are coprime), and undefined otherwise.
  • Inverse multiplication: [(ab mod n)(b?1 mod n)] mod n = a mod n.

In programming languages

[edit]

In addition, many computer systems provide a divmod functionality, which produces the quotient and the remainder at the same time. Examples include the x86 architecture's IDIV instruction, the C programming language's div() function, and Python's divmod() function.

Generalizations

[edit]

Modulo with offset

[edit]

Sometimes it is useful for the result of a modulo n to lie not between 0 and n ? 1, but between some number d and d + n ? 1. In that case, d is called an offset and d = 1 is particularly common.

There does not seem to be a standard notation for this operation, so let us tentatively use a modd n. We thus have the following definition:[60] x = a modd n just in case dxd + n ? 1 and x mod n = a mod n. Clearly, the usual modulo operation corresponds to zero offset: a mod n = a mod0 n.

The operation of modulo with offset is related to the floor function as follows:

To see this, let . We first show that x mod n = a mod n. It is in general true that (a + bn) mod n = a mod n for all integers b; thus, this is true also in the particular case when ; but that means that , which is what we wanted to prove. It remains to be shown that dxd + n ? 1. Let k and r be the integers such that a ? d = kn + r with 0 ≤ rn ? 1 (see Euclidean division). Then , thus . Now take 0 ≤ rn ? 1 and add d to both sides, obtaining dd + rd + n ? 1. But we've seen that x = d + r, so we are done.

The modulo with offset a modd n is implemented in Mathematica as Mod[a, n, d]?.[60]

Implementing other modulo definitions using truncation

[edit]

Despite the mathematical elegance of Knuth's floored division and Euclidean division, it is generally much more common to find a truncated division-based modulo in programming languages. Leijen provides the following algorithms for calculating the two divisions given a truncated integer division:

/* Euclidean and Floored divmod, in the style of C's ldiv() */
typedef struct {
  /* This structure is part of the C stdlib.h, but is reproduced here for clarity */
  long int quot;
  long int rem;
} ldiv_t;

/* Euclidean division */
inline ldiv_t ldivE(long numer, long denom) {
  /* The C99 and C++11 languages define both of these as truncating. */
  long q = numer / denom;
  long r = numer % denom;
  if (r < 0) {
    if (denom > 0) {
      q = q - 1;
      r = r + denom;
    } else {
      q = q + 1;
      r = r - denom;
    }
  }
  return (ldiv_t){.quot = q, .rem = r};
}

/* Floored division */
inline ldiv_t ldivF(long numer, long denom) {
  long q = numer / denom;
  long r = numer % denom;
  if ((r > 0 && denom < 0) || (r < 0 && denom > 0)) {
    q = q - 1;
    r = r + denom;
  }
  return (ldiv_t){.quot = q, .rem = r};
}

For both cases, the remainder can be calculated independently of the quotient, but not vice versa. The operations are combined here to save screen space, as the logical branches are the same.

See also

[edit]

Notes

[edit]
  1. ^ Mathematically, these two choices are but two of the infinite number of choices available for the inequality satisfied by a remainder.
  2. ^ a b Argument order reverses, i.e., α|ω computes , the remainder when dividing ω by α.
  3. ^ C99 and C++11 define the behavior of % to be truncated.[9] The standards before then leave the behavior implementation-defined.[10]
  4. ^ Divisor must be positive, otherwise undefined.
  5. ^ As discussed by Boute, ISO Pascal's definitions of div and mod do not obey the Division Identity of D = d · (D / d) + D % d, and are thus fundamentally broken.
  6. ^ Perl usually uses arithmetic modulo operator that is machine-independent. For examples and exceptions, see the Perl documentation on multiplicative operators.[45]

References

[edit]
  1. ^ Weisstein, Eric W. "Congruence". Wolfram MathWorld. Retrieved 2025-08-07.
  2. ^ Caldwell, Chris. "residue". Prime Glossary. Retrieved August 27, 2020.
  3. ^ Knuth, Donald. E. (1972). The Art of Computer Programming. Addison-Wesley.
  4. ^ Boute, Raymond T. (April 1992). "The Euclidean definition of the functions div and mod". ACM Transactions on Programming Languages and Systems. 14 (2). ACM Press (New York, NY, USA): 127–144. doi:10.1145/128861.128862. hdl:1854/LU-314490. S2CID 8321674.
  5. ^ Peterson, Doctor (5 July 2001). "Mod Function and Negative Numbers". Math Forum - Ask Dr. Math. Archived from the original on 2025-08-07. Retrieved 22 October 2019.
  6. ^ "Ada 83 LRM, Sec 4.5: Operators and Expression Evaluation". archive.adaic.com. Retrieved 2025-08-07.
  7. ^ Horvath, Adam (July 5, 2012). "Faster division and modulo operation - the power of two".
  8. ^ a b ISO/IEC 8652:2012 - Information technology — Programming languages — Ada. ISO, IEC. 2012. sec. 4.5.5 Multiplying Operators.
  9. ^ "C99 specification (ISO/IEC 9899:TC2)" (PDF). 2025-08-07. sec. 6.5.5 Multiplicative operators. Retrieved 16 August 2018.
  10. ^ ISO/IEC 14882:2003: Programming languages – C++. International Organization for Standardization (ISO), International Electrotechnical Commission (IEC). 2003. sec. 5.6.4. the binary % operator yields the remainder from the division of the first expression by the second. .... If both operands are nonnegative then the remainder is nonnegative; if not, the sign of the remainder is implementation-defined
  11. ^ ISO/IEC 9899:1990: Programming languages – C. ISO, IEC. 1990. sec. 7.5.6.4. The fmod function returns the value x - i * y, for some integer i such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.
  12. ^ a b dotnet-bot. "Math.IEEERemainder(Double, Double) Method (System)". Microsoft Learn. Retrieved 2025-08-07.
  13. ^ "clojure.core - Clojure v1.10.3 API documentation". clojure.github.io. Retrieved 2025-08-07.
  14. ^ "clojure.core - Clojure v1.10.3 API documentation". clojure.github.io. Retrieved 2025-08-07.
  15. ^ a b ISO/IEC JTC 1/SC 22/WG 4 (January 2023). ISO/IEC 1989:2023 – Programming language COBOL. ISO.{{cite book}}: CS1 maint: numeric names: authors list (link)
  16. ^ CoffeeScript operators
  17. ^ ISO/IEC JTC 1/SC 22 (February 2012). ISO/IEC 23271:2012 — Information technology — Common Language Infrastructure (CLI). ISO. §§ III.3.55–56.{{cite book}}: CS1 maint: numeric names: authors list (link)
  18. ^ "mod() - CSS: Cascading Style Sheets | MDN". developer.mozilla.org. 2025-08-07. Retrieved 2025-08-07.
  19. ^ "rem() - CSS: Cascading Style Sheets | MDN". developer.mozilla.org. 2025-08-07. Retrieved 2025-08-07.
  20. ^ "Expressions - D Programming Language". dlang.org. Retrieved 2025-08-07.
  21. ^ "operator % method - num class - dart:core library - Dart API". api.dart.dev. Retrieved 2025-08-07.
  22. ^ "remainder method - num class - dart:core library - Dart API". api.dart.dev. Retrieved 2025-08-07.
  23. ^ "Kernel — Elixir v1.11.3". hexdocs.pm. Retrieved 2025-08-07.
  24. ^ "Integer — Elixir v1.11.3". hexdocs.pm. Retrieved 2025-08-07.
  25. ^ "Basics - core 1.0.5". package.elm-lang.org. Retrieved 2025-08-07.
  26. ^ "Basics - core 1.0.5". package.elm-lang.org. Retrieved 2025-08-07.
  27. ^ "Erlang -- math". erlang.org. Retrieved 2025-08-07.
  28. ^ ANSI (28 January 1987). Programming Languages — Full BASIC. New York: American National Standards Institute. § 5.4.4. X modulo Y, i.e., X-Y*INT(X/Y).
  29. ^ ANSI (28 January 1987). Programming Languages — Full BASIC. New York: American National Standards Institute. § 5.4.4. The remainder function, i.e., X-Y*IP(X/Y).
  30. ^ "GLSL Language Specification, Version 4.50.7" (PDF). section 5.9 Expressions. If both operands are non-negative, then the remainder is non-negative. Results are undefined if one or both operands are negative.
  31. ^ "GLSL Language Specification, Version 4.50.7" (PDF). section 8.3 Common Functions.
  32. ^ "The Go Programming Language Specification - The Go Programming Language". go.dev. Retrieved 2025-08-07.
  33. ^ "math package - math - pkg.go.dev". pkg.go.dev. Retrieved 2025-08-07.
  34. ^ "big package - math/big - pkg.go.dev". pkg.go.dev. Retrieved 2025-08-07.
  35. ^ "big package - math/big - pkg.go.dev". pkg.go.dev. Retrieved 2025-08-07.
  36. ^ a b "6 Predefined Types and Classes". www.haskell.org. Retrieved 2025-08-07.
  37. ^ "Operators". Microsoft. 30 June 2021. Retrieved 2025-08-07. The % operator is defined only in cases where either both sides are positive or both sides are negative. Unlike C, it also operates on floating-point data types, as well as integers.
  38. ^ "Mathematics · The Julia Language". docs.julialang.org. Retrieved 2025-08-07.
  39. ^ "Mathematics · The Julia Language". docs.julialang.org. Retrieved 2025-08-07.
  40. ^ "rem - Kotlin Programming Language". Kotlin. Retrieved 2025-08-07.
  41. ^ "mod - Kotlin Programming Language". Kotlin. Retrieved 2025-08-07.
  42. ^ "Chapter 3: The NASM Language". NASM - The Netwide Assembler version 2.15.05.
  43. ^ "OCaml library : Stdlib". ocaml.org. Retrieved 2025-08-07.
  44. ^ "OCaml library : Stdlib". ocaml.org. Retrieved 2025-08-07.
  45. ^ Perl documentation
  46. ^ "PHP: Arithmetic Operators - Manual". www.php.net. Retrieved 2025-08-07.
  47. ^ "PHP: fmod - Manual". www.php.net. Retrieved 2025-08-07.
  48. ^ "EuclideanRing".
  49. ^ QuantumWriter. "Expressions". docs.microsoft.com. Retrieved 2025-08-07.
  50. ^ "R: Arithmetic Operators". search.r-project.org. Retrieved 2025-08-07.
  51. ^ "F32 - Rust".
  52. ^ a b r6rs.org
  53. ^ "Shell Command Language". pubs.opengroup.org. Retrieved 2025-08-07.
  54. ^ "Solidity Documentation". docs.soliditylang.org. Retrieved 2025-08-07.
  55. ^ "Apple Developer Documentation". developer.apple.com. Retrieved 2025-08-07.
  56. ^ "Apple Developer Documentation". developer.apple.com. Retrieved 2025-08-07.
  57. ^ "Apple Developer Documentation". developer.apple.com. Retrieved 2025-08-07.
  58. ^ a b Rossberg, Andreas, ed. (19 April 2022). "WebAssembly Core Specification: Version 2.0". World Wide Web Consortium. § 4.3.2 Integer Operations.
  59. ^ "Zig Documentation". Zig Programming Language. Retrieved 2025-08-07.
  60. ^ a b "Mod". Wolfram Language & System Documentation Center. Wolfram Research. 2020. Retrieved April 8, 2020.
[edit]
dose是什么意思 净身是什么意思 苹果的英文是什么 rap是什么意思 黄毛是什么意思
人流后什么叫重体力活 宫颈肥大伴纳氏囊肿是什么意思 高铁与动车有什么区别 额头长痘痘是什么原因怎么调理 茄子把有什么功效
阴道镜是检查什么的 压强是什么 红是什么意思 舌苔黄腻是什么原因 吃完饭想吐是什么原因
医院属于什么单位 的五行属什么 甲亢多吃什么食物比较好 看男性性功能挂什么科 输卵管堵塞什么症状
衡水老白干是什么香型hcv7jop9ns1r.cn 风流倜傥是什么意思hcv9jop4ns7r.cn 喝什么茶降血压hcv9jop1ns6r.cn 来大姨妈不能吃什么水果hcv7jop9ns5r.cn 办理公证需要什么材料hcv8jop1ns6r.cn
心脏早博吃什么药好jinxinzhichuang.com 一什么鹿角chuanglingweilai.com 年少轻狂是什么意思hcv8jop0ns9r.cn 舌苔发苦是什么原因hcv8jop6ns4r.cn cock什么意思imcecn.com
产褥热是什么病mmeoe.com names是什么意思hcv8jop1ns8r.cn 奎宁现在叫什么药hcv9jop5ns2r.cn 甲钴胺的副作用是什么xjhesheng.com 别出心裁什么意思bfb118.com
你最想做什么hcv8jop6ns9r.cn 什么是软组织损伤qingzhougame.com 肝实质回声欠均匀是什么意思hcv8jop1ns7r.cn 两边太阳胀痛什么原因引起的hcv9jop1ns7r.cn 什么是有氧运动和无氧运动travellingsim.com
百度